• Title/Summary/Keyword: Sales Forecasting

Search Result 113, Processing Time 0.026 seconds

A Study on the Factors Influencing on the Salesperson's Resistance to SFA (영업사원의 SFA(영업자동화시스템)에 대한 저항에 영향을 미치는 요인들에 대한 연구)

  • Park, Chan Wook;Li, Liang;Cho, Ara
    • Journal of Information Technology Services
    • /
    • v.15 no.3
    • /
    • pp.15-31
    • /
    • 2016
  • Sales Force Automation (SFA) is a strategic information system and one of the components of operational CRM system. SFA supports salespeople's activities such as selection of potential customers, creative value proposition, after-sales services, etc. SFA is increasingly used in many companies because it has the advantages to raise the salespeople's productivity by developing forecasting ability, value proposition ability, after sales service ability etc. Many researches have shown that implementation of SFA leads to the increase of salepeople performance, organizational performance, and quality of customer relationship. However, Some prior studies have discussed on the SFA implementation failure and pointed out that one of important causes of this failure is salespeople's resistance to SFA. Although many researches explain SFA acceptance phenomenon using Technology Acceptance Model (TAM) and Theory of Planned Behavior (TPB), these researches didn't deeply investigate the salespeople's resistance to SFA. Therefore, this study focuses on the factors influencing salespeople's resistance to SFA and the relationships among these factors. This study identified three factors (salespeople's perceived loss of power, perceived loss of autonomy, and perceived time and effort waste) influencing salespeople's resistance to SFA. The hypotheses testing results showed that salespeople's perceived loss of power and perceived time and effort waste significantly increased salespeople's resistance to SFA. And salespeople's perceived loss of power plays a mediating role between perceived loss of autonomy/perceived time and effort waste and salespeople's resistance to SFA. At the end of the paper, theoretical and managerial implications of this study and the limitations and future research directions are discussed.

Forecasting the Demand for the Substitution of Next Generations of Digital TV Using Choice-Based Diffusion Models (선택기반확산모형을 이용한 디지털 TV 수요예측)

  • Jeong U-Su;Nam Seung-Yong;Kim Hyeong-Jun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1116-1123
    • /
    • 2006
  • The methodological framework proposed in this paper addresses the strength of the applied Bass model by Mahajan and Muller(1996) that it reflects the substitution of next generations among products. Also this paper is to estimate and analyze the forecast of demand for products that do not exist in the marketplace. We forecast the sales of digital TV using estimated market share and data obtained by the face to face Interview. In this research, we use two methods to analyze the demand for Digital TV that are the forecasting the Demand for the Substitution and binary logit analysis. The logit analysis is to estimate the decisive factor of purchasing digital TV. The decisive factors are composed of purchasing plan, region, gender, TV price, contents, coverage, income, age, and TV program. We apply the model to South Korea's market for digital TV. The results show that (1) Income, region and TV price play a prominent part which is the decisive factor of purchasing digital TV. (2) We forecaste the demand of digital TV that will be demanded about 18 millions TVs in 2015

  • PDF

A Choice-Based Competitive Diffusion Model with Applications to Mobile Telecommunication Service Market in Korea (선택관점의 경쟁확산모형과 국내 이동전화 서비스 시장에의 응용)

  • Jun, Duk-Bin;Kim, Seon-Kyoung;Cha, Kyung-Cheon;Park, Yoon-Seo;Park, Myoung-Hwan;Park, Young-Sun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.3
    • /
    • pp.267-273
    • /
    • 2001
  • While forecasting sales of a new product is very difficult, it is critical to market success. This is especially true when other products have a highly negative influence on the product because of competition effect. In this paper, we develop a choice-based competitive diffusion model and apply to the case where two digital mobile telecommunication services, that is, digital cellular and PCS services, compete. The basic premise is that demand patterns result from choice behavior, where customers choose a product to maximize their utility. In comparison with Bass-type competitive diffusion models, our model provides superior fitting and forecasting performance. The choice-based model is useful in that it enables the description of such competitive environments and provides the flexibility to include marketing mix variables such as price and advertising.

  • PDF

A Study on the Applicability of Neural Network Model for Prediction of tee Apartment Market (아파트시장예측을 위한 신경망분석 적응가능성에 대한 연구)

  • Nam, Young-Woo;Lee, Jeong-Min
    • Korean Journal of Construction Engineering and Management
    • /
    • v.7 no.2 s.30
    • /
    • pp.162-170
    • /
    • 2006
  • Neural network analysis is expected to enhance the forecasting ability for the real estate market. This paper reviews definition, structure, strengths and weaknesses of neural network analysis, and verifies the applicability of neural network analysis for the real estate market. Neural network analysis is compared with regression analysis using the same sample data. The analyses model the macroeconomic parameters that influence the sales price of apartments. The results show that neural network analysis provides better forecasting accuracy than regression analysis does, what confirms the applicability of neural network analysis for the real estate market.

Regression models based on cumulative data for forecasting of new product (신제품 수요예측을 위하여 누적자료를 활용한 회귀모형에 관한 연구)

  • Park, Sang-Gue;Oh, Jung-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.1
    • /
    • pp.117-124
    • /
    • 2009
  • If time series data with seasonal effect exist, various statistical models like winters for successful forecasts could be used. But if the data are not enough to estimate seasonal effect, not much methods are available. This paper proposes the statistical forecasting method based on cumulative data when the data are not enough to estimate seasonal effect. We apply this method to real cosmetic sales data and show its better performance over moving average method.

  • PDF

A Study on Forecasting Method for a Short-Term Demand Forecasting of Customer's Electric Demand (수요측 단기 전력소비패턴 예측을 위한 평균 및 시계열 분석방법 연구)

  • Ko, Jong-Min;Yang, Il-Kwon;Song, Jae-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • The traditional demand prediction was based on the technique wherein electric power corporations made monthly or seasonal estimation of electric power consumption for each area and subscription type for the next one or two years to consider both seasonally generated and local consumed amounts. Note, however, that techniques such as pricing, power generation plan, or sales strategy establishment were used by corporations without considering the production, comparison, and analysis techniques of the predicted consumption to enable efficient power consumption on the actual demand side. In this paper, to calculate the predicted value of electric power consumption on a short-term basis (15 minutes) according to the amount of electric power actually consumed for 15 minutes on the demand side, we performed comparison and analysis by applying a 15-minute interval prediction technique to the average and that to the time series analysis to show how they were made and what we obtained from the simulations.

The Accuracy of Various Value Drivers of Price Multiple Method in Determining Equity Price

  • YOOYANYONG, Pisal;SUWANRAGSA, Issara;TANGJITPROM, Nopphon
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.1
    • /
    • pp.29-36
    • /
    • 2020
  • Stock price multiple is one of the most well-known equity valuation technique used to forecast equity price. It measures by multiplying "the ratio of stock price to a value driver" by a value driver. The value driver can be earning per share (EPS), sales or other financial measurements. The objective of price multiple technique is to evaluate the value of assets and compare how similar assets are priced in the market. Although stock price multiple technique is common in financial filed, studies on the application of the technique in Thailand is still limited. The present study is conducted to serve three major objectives. The first objective is to apply the technique to measure value of firms in banking sector in the Stock Exchange of Thailand. The second objective is to develop composite price multiple index to forecast equity prices. The third objective is to compare valuation accuracy of different value drivers of price multiple (i.e. EPS, Earnings Growth, Earnings Before Interest Taxes Depreciation and Amortization, Sales, Book Value and Composite Index) in forecasting equity prices. Results indicated that EPS is the most accurate value drivers of price multiple used to forecast equity price of firms in baking sector.

A Study on the Enterprise Value Analysis using AHP and Logit Regressions (AHP와 로짓회귀분석을 활용한 기업가치 분석방법)

  • Gu, Seung-Hwan;Shin, Tack-Hyun;Yuldashev, Zafar
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.5810-5818
    • /
    • 2015
  • The dissertation presents the portfolio construction method using the score sheet so that general investors can utilize it easily. This study draws the significant variables to contribute the enterprise value and suggests the combined models by applying the single methodology, which private investors can easily utilize. The results of the research can be classified into 2 areas. Firstly, the significantly affecting variables were selected for analyzing the enterprise value. The variables and the method for the enterprise value analysis were studied from the existing researches to choose the optimal variables. The variables were identified by using AHP method and the structure equation method from the investigation of the previous researches. And the critical variables were added extracted from the common denominator of variables which the 3 grue investors used for their investment. The final variables identified are dividend yield, PER, PBR, PCR, EV/EBITDA, ROE, net income, sales growth rate, net current asset, debt ratio, current ratio, rate of operating profits, ratio of operating profit to net sales, ratio of net income to net sales, net profit to total assets, EPS growth rate, inventory turnover ratio, and receivables turnover. Second, the new methodologies for forecasting enterprise value modifying the existing methods were developed. The result of the Logistic regression analysis for forecasting showed that the equation could not be suitable as the accuracy with 91.98%.

A Study on Customer Review Rating Recommendation and Prediction through Online Promotional Activity Analysis - Focusing on "S" Company Wearable Products - (온라인 판매촉진활동 분석을 통한 고객 리뷰평점 추천 및 예측에 관한 연구 : S사 Wearable 상품중심으로)

  • Shin, Ho-cheol
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.4
    • /
    • pp.118-129
    • /
    • 2022
  • The purpose of this report is to study a strategic model of promotion activities through various analysis and sales forecasting by selecting wearable products for domestic online companies and collecting sales data. For data analysis, various algorithms are used for analysis and the results are selected as the optimal model. The gradation boosting model, which is selected as the best result, will allow nine independent variables to be entered, including promotion type, price, amount, gender, model, company, grade, sales date, and region, when predicting dependent variables through supervised learning. In this study, the review values set as dependent variables for each type of sales promotion were studied in more detail through the ensemble analysis technique, and the main purpose is to analyze and predict them. The purpose of this study is to study the grades. As a result of the analysis, the evaluation result is 95% of AUC, and F1 is about 93%. In the end, it was confirmed that among the types of sales promotion activities, value-added benefits affected the number of reviews and review grades, and that major variables affected the review and review grades.

A Study on the Intelligent Quick Response System for Fast Fashion(IQRS-FF) (패스트 패션을 위한 지능형 신속대응시스템(IQRS-FF)에 관한 연구)

  • Park, Hyun-Sung;Park, Kwang-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.163-179
    • /
    • 2010
  • Recentlythe concept of fast fashion is drawing attention as customer needs are diversified and supply lead time is getting shorter in fashion industry. It is emphasized as one of the critical success factors in the fashion industry how quickly and efficiently to satisfy the customer needs as the competition has intensified. Because the fast fashion is inherently susceptible to trend, it is very important for fashion retailers to make quick decisions regarding items to launch, quantity based on demand prediction, and the time to respond. Also the planning decisions must be executed through the business processes of procurement, production, and logistics in real time. In order to adapt to this trend, the fashion industry urgently needs supports from intelligent quick response(QR) system. However, the traditional functions of QR systems have not been able to completely satisfy such demands of the fast fashion industry. This paper proposes an intelligent quick response system for the fast fashion(IQRS-FF). Presented are models for QR process, QR principles and execution, and QR quantity and timing computation. IQRS-FF models support the decision makers by providing useful information with automated and rule-based algorithms. If the predefined conditions of a rule are satisfied, the actions defined in the rule are automatically taken or informed to the decision makers. In IQRS-FF, QRdecisions are made in two stages: pre-season and in-season. In pre-season, firstly master demand prediction is performed based on the macro level analysis such as local and global economy, fashion trends and competitors. The prediction proceeds to the master production and procurement planning. Checking availability and delivery of materials for production, decision makers must make reservations or request procurements. For the outsourcing materials, they must check the availability and capacity of partners. By the master plans, the performance of the QR during the in-season is greatly enhanced and the decision to select the QR items is made fully considering the availability of materials in warehouse as well as partners' capacity. During in-season, the decision makers must find the right time to QR as the actual sales occur in stores. Then they are to decide items to QRbased not only on the qualitative criteria such as opinions from sales persons but also on the quantitative criteria such as sales volume, the recent sales trend, inventory level, the remaining period, the forecast for the remaining period, and competitors' performance. To calculate QR quantity in IQRS-FF, two calculation methods are designed: QR Index based calculation and attribute similarity based calculation using demographic cluster. In the early period of a new season, the attribute similarity based QR amount calculation is better used because there are not enough historical sales data. By analyzing sales trends of the categories or items that have similar attributes, QR quantity can be computed. On the other hand, in case of having enough information to analyze the sales trends or forecasting, the QR Index based calculation method can be used. Having defined the models for decision making for QR, we design KPIs(Key Performance Indicators) to test the reliability of the models in critical decision makings: the difference of sales volumebetween QR items and non-QR items; the accuracy rate of QR the lead-time spent on QR decision-making. To verify the effectiveness and practicality of the proposed models, a case study has been performed for a representative fashion company which recently developed and launched the IQRS-FF. The case study shows that the average sales rateof QR items increased by 15%, the differences in sales rate between QR items and non-QR items increased by 10%, the QR accuracy was 70%, the lead time for QR dramatically decreased from 120 hours to 8 hours.