• Title/Summary/Keyword: Sales Forecasting

Search Result 113, Processing Time 0.025 seconds

A Study on the Evaluation Method about Marketability of Product Design (제품디자인의 시장성 평가방법 연구)

  • 이문기
    • Archives of design research
    • /
    • v.14 no.1
    • /
    • pp.93-101
    • /
    • 2001
  • This study suggested how to apply it decision-making of product development rapidly by design evaluation process to objectify and the result to quantify with viewpoint of design evaluation sets to marketability. Coverage of this method limited to the evaluation stage of design concept. The procedure of study, first of all, referred to some type of design evaluation method and their feature. And next, referred to some kinds of demand forecasting for marketing. Above an, this study focused on the method of demand forecasting by buying intentions surveys proper to the marketability evaluation of new product design. On a case study, I had investigated preference survey and buying intentions surveys about the design proposal of "language master audio". I selected the best design proposal through the conjoint analysis and also investigated demand forecasting. First, on the basis of buying intentions surveys, choose population and had produced buying demand, awareness demand, potential demand. I could estimate some profit to take out expense and cost from the buying demand. This estimated profit is marketability judgement data of product design at the design concept stage and can be utilized to measurable data for decision-making of product development. Through the case study, this method could forecast a target demand, and even if it is some difference between real sales volume, but the case study could verified that this method is effective to the evaluation of marketability in case of completely new product got on the typical category and the product category could be set up the population clearly.

  • PDF

Consideration of Assortment Decision Criteria : Men's Wear vs. Women's Wear and Male vs. Female Retail Buyers

  • Bahng, Youngjin
    • The Journal of Industrial Distribution & Business
    • /
    • v.9 no.7
    • /
    • pp.7-18
    • /
    • 2018
  • Purpose - The purpose of this paper is to examine how clothing retail buyers (i.e., retail buyers, merchandisers, and storeowners), who are involved in assortment planning and retail buying use assortment criteria in their decisions. Comparisons are made between criteria used by men's wear and women's wear retail buyers as well as criteria used by male and female retail buyers. Research design, data, and methodology - A structured questionnaire was developed to collect data both in English and Korean. After conducting two pilot tests, the survey was conducted in Seoul, South Korea. Mantrala et al.'s 17 inputs of product assortment planning model with 23 assortment criteria from other previous studies were used. Results - Significant differences existed in consideration of assortment criteria between men's wear and women's wear retail buyers as well as between male and female retail buyers. Men's wear retail buyers rated the importance of sales history criteria (i.e., sales history, previous year's sales of same/similar styles) significantly lower than women's wear buyers did. Female retail buyers rated sales history criteria and weather criteria (i.e., unpredicted weather change, forecasting information of weather) significantly higher than male retail buyers did. Conclusions - This study provides guidelines for retail buyers regarding what criteria to use in what situations and how to organize assortment criteria from the most important criterion to the least one. In addition, the findings help them understand other retail buyers' buying behavior.

Merchandise Management Using Web Mining in Business To Customer Electronic Commerce (기업과 소비자간 전자상거래에서의 웹 마이닝을 이용한 상품관리)

  • 임광혁;홍한국;박상찬
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.1
    • /
    • pp.97-121
    • /
    • 2001
  • Until now, we have believed that one of advantages of cyber market is that it can virtually display and sell goods because it does not necessary maintain expensive physical shops and inventories. But, in a highly competitive environment, business model that does away with goods in stock must be modified. As we know in the case of AMAZON, leading companies already consider merchandise management as a critical success factor in their business model. That is, a solution to compete against one's competitors in a highly competitive environment is merchandise management as in the traditional retail market. Cyber market has not only past sales data but also web log data before sales data that contains information of path that customer search and purchase on cyber market as compared with traditional retail market. So if we can correctly analyze the characteristics of before sales patterns using web log data, we can better prepare for the potential customers and effectively manage inventories and merchandises. We introduce a systematic analysis method to extract useful data for merchandise management - demand forecasting, evaluating & selecting - using web mining that is the application of data mining techniques to the World Wide Web. We use various techniques of web mining such as clustering, mining association rules, mining sequential patterns.

  • PDF

A Hybrid Method to Improve Forecasting Accuracy Utilizing Genetic Algorithm: An Application to the Data of Processed Cooked Rice

  • Takeyasu, Hiromasa;Higuchi, Yuki;Takeyasu, Kazuhiro
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.3
    • /
    • pp.244-253
    • /
    • 2013
  • In industries, shipping is an important issue in improving the forecasting accuracy of sales. This paper introduces a hybrid method and plural methods are compared. Focusing the equation of exponential smoothing method (ESM) that is equivalent to (1, 1) order autoregressive-moving-average (ARMA) model equation, a new method of estimating the smoothing constant in ESM had been proposed previously by us which satisfies minimum variance of forecasting error. Generally, the smoothing constant is selected arbitrarily. However, this paper utilizes the above stated theoretical solution. Firstly, we make estimation of ARMA model parameter and then estimate the smoothing constant. Thus, theoretical solution is derived in a simple way and it may be utilized in various fields. Furthermore, combining the trend removing method with this method, we aim to improve forecasting accuracy. This method is executed in the following method. Trend removing by the combination of linear and 2nd order nonlinear function and 3rd order nonlinear function is executed to the original production data of two kinds of bread. Genetic algorithm is utilized to search the optimal weight for the weighting parameters of linear and nonlinear function. For comparison, the monthly trend is removed after that. Theoretical solution of smoothing constant of ESM is calculated for both of the monthly trend removing data and the non-monthly trend removing data. Then forecasting is executed on these data. The new method shows that it is useful for the time series that has various trend characteristics and has rather strong seasonal trend. The effectiveness of this method should be examined in various cases.

A Time Series Forecasting Model with the Option to Choose between Global and Clustered Local Models for Hotel Demand Forecasting (호텔 수요 예측을 위한 전역/지역 모델을 선택적으로 활용하는 시계열 예측 모델)

  • Keehyun Park;Gyeongho Jung;Hyunchul Ahn
    • The Journal of Bigdata
    • /
    • v.9 no.1
    • /
    • pp.31-47
    • /
    • 2024
  • With the advancement of artificial intelligence, the travel and hospitality industry is also adopting AI and machine learning technologies for various purposes. In the tourism industry, demand forecasting is recognized as a very important factor, as it directly impacts service efficiency and revenue maximization. Demand forecasting requires the consideration of time-varying data flows, which is why statistical techniques and machine learning models are used. In recent years, variations and integration of existing models have been studied to account for the diversity of demand forecasting data and the complexity of the natural world, which have been reported to improve forecasting performance concerning uncertainty and variability. This study also proposes a new model that integrates various machine-learning approaches to improve the accuracy of hotel sales demand forecasting. Specifically, this study proposes a new time series forecasting model based on XGBoost that selectively utilizes a local model by clustering with DTW K-means and a global model using the entire data to improve forecasting performance. The hotel demand forecasting model that selectively utilizes global and regional models proposed in this study is expected to impact the growth of the hotel and travel industry positively and can be applied to forecasting in other business fields in the future.

A case study to Regression Analysis using Artificial Neural Network (인공신경망을 이용한 회귀분석 사례 조사)

  • Kim, Jie-Hyun;Ree, Sang-Bok
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2010.04a
    • /
    • pp.402-408
    • /
    • 2010
  • Forecasting have qualitative and quantitative methods. Quantitative one analyze macro-economic factors such as the rate of exchange, oil price, interest rate and also predict the micro-economic factors such as sales and demands. Applying various statistical methods depends on the type of data. when data has seasonality and trend, Time Series analysis is proper but when it has casual relation, Regression analysis is good for this. Time Series and Regression can be used together. This study investigate artificial neural networks which is predictive technique for casual relation and try to compare the accuracy of forecasting between regression analysis and artificial neural network.

  • PDF

Intelligent System Predictor using Virtual Neural Predictive Model

  • 박상민
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1998.03a
    • /
    • pp.101-105
    • /
    • 1998
  • A large system predictor, which can perform prediction of sales trend in a huge number of distribution centers, is presented using neural predictive model. There are 20,000 number of distribution centers, and each distribution center need to forecast future demand in order to establish a reasonable inventory policy. Therefore, the number of forecasting models corresponds to the number of distribution centers, which is not possible to estimate that kind of huge number of accurate models in ERP (Enterprise Resource Planning)module. Multilayer neural net as universal approximation is employed for fitting the prediction model. In order to improve prediction accuracy, a sequential simulation procedure is performed to get appropriate network structure and also to improve forecasting accuracy. The proposed simulation procedure includes neural structure identification and virtual predictive model generation. The predictive model generation consists of generating virtual signals and estimating predictive model. The virtual predictive model plays a key role in tuning the real model by absorbing the real model errors. The complement approach, based on real and virtual model, could forecast the future demands of various distribution centers.

  • PDF

Web Mining for successful e-Business based on Artificial Intelligence Techniques (성공적인 e-Business를 위한 인공지능 기법 기반 웹 마이닝)

  • 이장희;유성진;박상찬
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.2
    • /
    • pp.159-175
    • /
    • 2002
  • Web mining is an emerging science of applying modem data mining technologies to the problem of extracting valid, comprehensible, and actionable information from large databases of web in e-Business environment and of using it to make crucial e-Business decisions. In this paper, we present the noble framework of data visualization system based on web mining for analyzing the characteristics of on-line customers in e-Business. We also propose the framework of forecasting system for providing the forecasting information of sales/purchase through the use of web mining based on artificial intelligence techniques such as back-propagation network, memory-based reasoning, and self-organizing map.

  • PDF

Forecasting of new businesses after restructuring of power industry

  • Koo, Young-Duk;Kim, Eun-Sun;Park, Young-Seo
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.2
    • /
    • pp.116-118
    • /
    • 2004
  • In the power industry after restructuring of Power industry will be appeared on-site type business, power retail sales business, and power wholesales business, power dealing business, customer inclination business & delivery of power facilities. Among them, power trade business, customer inclination business and on-site type business will be rapidly increased and occupied attention. In addition, it is forecasted to advent the broker, provider, market place, power marketer, system operator and generator as a main player. Meanwhile, it needs protection of existing power industry and activation of new energy market for accomplishment of restructuring of power industry.

A Sales Forecasting Method Based on Customer Characteristics and Sales Big Data (고객 특성과 상품 판매 빅데이터를 활용한 판매 예측 방법)

  • Lee, Myung Hyun
    • Annual Conference of KIPS
    • /
    • 2014.04a
    • /
    • pp.628-630
    • /
    • 2014
  • 상품 판매량의 변화를 예측하는 것은 기업의 경영에 있어서 매우 중요한 요소이며, 상품의 재고 관리 등에 큰 도움을 줄 수 있다. 최근 여러 분야에서 그동안 수집된 방대한 양의 빅데이터를 분석하여 마케팅에 활용하려는 연구가 진행 중이다. 이 논문에서는 상품 판매 빅데이터로부터 고객의 특성에 따른 상품 판매량과 고객 특성별 상품 판매량의 변화 추이를 분석하고, 분석 결과를 바탕으로 각 상품별 판매량을 예측할 수 있는 방법을 제안한다. 이 방법을 활용하면 고객의 변화에 따른 상품의 판매량을 예측할 수 있으므로, 기업 경영에 있어서 생산관리, 전략수립, 마케팅 등에서 큰 효과를 얻을 수 있다.