• 제목/요약/키워드: Saint-Venant Principle

검색결과 16건 처리시간 0.02초

Flexural behavior of beams in steel plate shear walls

  • Qin, Ying;Lu, Jin-Yu;Huang, Li-Cheng-Xi;Cao, Shi
    • Steel and Composite Structures
    • /
    • 제23권4호
    • /
    • pp.473-481
    • /
    • 2017
  • Steel plate shear wall (SPSW) system has been increasingly used for lateral loads resisting system since 1980s when the utilization of post-buckling strength of SPSW was realized. The structural response of SPSWs largely depends on the behavior of the surrounded beams. The beams are normally required to behave in the elastic region when the SPSW fully buckled and formed the tension field action. However, most modern design codes do not specify how this requirement can be achieved. This paper presents theoretical investigation and design procedures of manually calculating the plastic flexural capacity of the beams of SPSWs and can be considered as an extension to the previous work by Qu and Bruneau (2011). The reduction in the plastic flexural capacity of beam was considered to account for the presence of shear stress that was altered towards flanges at the boundary region, which can be explained by Saint-Venant's principle. The reduction in beam web was introduced and modified based on the research by Qu and Bruneau (2011), while the shear stress in the web in this research is excluded due to the boundary effect. The plastic flexural capacity of the beams is given by the superposition of the contributions from the flanges and the web. The developed equations are capable of predicting the plastic moment of the beams subjected to combined shear force, axial force, bending moment, and tension fields induced by yielded infill panels. Good agreement was found between the theoretical results and the data from previous research for flexural capacity of beams.

반 무한체 위의 사각조각 표면에 작용하는 접선하중에 의한 반 무한체내의 응력 해석 (The Stress Field in the Body by Tangential Loading of a Rectangular Patch on a Semi-Infinite Solid)

  • 이문주;구영필;조용주
    • 대한기계학회논문집A
    • /
    • 제24권4호
    • /
    • pp.1032-1038
    • /
    • 2000
  • The stress field in the body by tangential loading of a rectangular patch on a semi-infinite solid has been solved analytically using potential function. The validity of result of this study was proved by Saint-Venant's principle in the remote region and in the vicinity of the surface with superposition of point loads.

SPATIAL BEHAVIOR OF SOLUTION FOR THE STOKES FLOW EQUATION

  • Liu, Yan;Liao, Wenhui;Lin, Changhao
    • 대한수학회보
    • /
    • 제48권2호
    • /
    • pp.397-412
    • /
    • 2011
  • In this paper, the equation of the transient Stokes flow of an incompressible viscous fluid is studied. Growth and decay estimates are established associating some appropriate cross sectional line and area integral measures. The method of the proof is based on a first-order differential inequality leading to an alternative of Phragm$\'{e}$n-Lindell$\"{o} $f type in terms of an area measure of the amplitude in question. In the case of decay, we also indicate how to bound the total energy.

부분 모델을 이용한 접촉하중을 받는 코팅층이 있는 부재의 열적/기계적 응력해석 (Thermo-Mechanica1 Stress Analyses of Part with Coated Layer under Contact Load Using Partial Model)

  • 권영두;김석삼;신세현;추상우
    • Tribology and Lubricants
    • /
    • 제18권3호
    • /
    • pp.228-234
    • /
    • 2002
  • Generally, space structures are subjected to severe situations, such as, sublimation, strong evaporation of lubricants, thermal stresses, high temperature gradients, irradiation, impacts by microscopic meteorites, and other factors. Recent]y, various kinds of coatings are applied to the parts under heavy contact stresses, in order to insure long wear-free lives and/or reduce friction coefficients. In space structures, molybdenum disulfide is using frequently. Moreover TiN, Al$_2$O$_3$, PTFE(Poly Tetra Fluor Ethylene) are introduced recently for space structure. In this part we are going to apply the partial model method, developed in reference[11] to analyze part with coated layer. In referencer[l1], we compute the reasonable size of partial model and aspect ratio. Using these data, we analyze the structures coated with TiN, Al$_2$O$_3$, PTFE under contact load, temperature and crack model . Beside, we consider the stress analysis under time dependent load and transient thermal effect.

On triply coupled vibration of eccentrically loaded thin-walled beam using dynamic stiffness matrix method

  • Ghandi, Elham;Shiri, Babak
    • Structural Engineering and Mechanics
    • /
    • 제62권6호
    • /
    • pp.759-769
    • /
    • 2017
  • The effect of central axial load on natural frequencies of various thin-walled beams, are investigated by some researchers using different methods such as finite element, transfer matrix and dynamic stiffness matrix methods. However, there are situations that the load will be off centre. This type of loading is called eccentric load. The effect of the eccentricity of axial load on the natural frequencies of asymmetric thin-walled beams is a subject that has not been investigated so far. In this paper, the mentioned effect is studied using exact dynamic stiffness matrix method. Flexure and torsion of the aforesaid thin-walled beam is based on the Bernoulli-Euler and Vlasov theories, respectively. Therefore, the intended thin-walled beam has flexural rigidity, saint-venant torsional rigidity and warping rigidity. In this paper, the Hamilton‟s principle is used for deriving governing partial differential equations of motion and force boundary conditions. Throughout the process, the uniform distribution of mass in the member is accounted for exactly and thus necessitates the solution of a transcendental eigenvalue problem. This is accomplished using the Wittrick-Williams algorithm. Finally, in order to verify the accuracy of the presented theory, the numerical solutions are given and compared with the results that are available in the literature and finite element solutions using ABAQUS software.

알루미늄합금(合金)의 저항용접(抵抗熔接)에 따른 열응력(熱應力) 및 잔류응력(殘留應力)의 해석(解析) (On the Thermal Stress and Residual Stress Distributions in a Aluminum Alloy Plate due to Resistance Spot Welding)

  • 김재근;김효철
    • 대한조선학회지
    • /
    • 제9권2호
    • /
    • pp.21-32
    • /
    • 1972
  • The problems of thermal stress and residual stress in resistance spot welding are studied from two standpoint namely, effect of temperature distributions and effect of the radius of free boundary. The radius of the region where the temperature distributions are occured is taken as a function of time after welding and as a finite size, 6 times of heated zone. The region of the radial stress distribution is treated as a function of time under Saint-Venant's principle and 6 or 12 times of originally heated zone. Thermal stresses and strains are obtained by analytic solution under constant mechanical properties and by the finite difference method for varing properties under temperature variation. From the computed results following conclusions are derived (1) For the engineering purpose, the region of temperature distribution and stress distribution can be treated as a finite region, $R=r_o=6r_e$ (2) If the maximum temperature of the aluminum alloy plate is less than $500^{\circ}F$, thermal stresses and strains can be obtained with constant mechanical properties. (3) The residual stresses and strains will be remained in welds and its vicinity.

  • PDF