• Title/Summary/Keyword: Sagittal split ramus

Search Result 153, Processing Time 0.029 seconds

Maxillary Distraction Osteogenesis Using $TS-MD^{(R)}$ (Trans-sinusoidal Maxillary distractor) on Cleft Patients (Trans-sinusoidal maxillary distractor($TS-MD^{(R)}$)를 이용한 구순구개열 환자에서의 상악골 골신장술)

  • Paeng, Jun-Young;Lee, Il-Gu;Myoung, Hoon;Hwang, Soon-Jung;Seo, Byoung-Moo;Choe, Jin-Yeong;Lee, Jong-Ho;Choung, Pill-Hoon;Kim, Myung-Jin
    • Korean Journal of Cleft Lip And Palate
    • /
    • v.8 no.2
    • /
    • pp.71-79
    • /
    • 2005
  • Purpose: Maxillary hypoplasia is a common developmental problem of cleft lip and palate. Fair results with distraction osteogenesis have been reported especially when these patients need a large amount of maxillary advancement, instead of orthognathic surgery. The purpose of this study is to evaluate the clinical results with a relatively new distractor, $TS-MD^{(R)}$ (Trans-sinusoidal maxillary distractor, KLS Martin, Tuttlingen, Germany) which was used for the advancement of the maxilla in the cleft patients. Patients and Method: Distraction osteogenesis using $TS-MD^{(R)}$ was performed for four CLP patients (three males and one female) who had maxillary hypoplasia. All patients were over 16 years old. As three patients showed mandibular prognathism as well, bilateral sagittal split ramus osteotomy for mandibular setback was performed at the same time. After consolidation periods of 4 to 12 weeks, the distraction devices were removed and miniplates were placed for simultaneous internal fixation. Results: Three patients showed a large amount of incisal overbite but one patient did not have sufficient maxillary advancement. Le Fort I osteotomy, maxillary advancement and internal fixation should have been performed for the patient when removing the distraction devices. Different from the $clinician{\box}s$ expectation, the amount of maxillary advancement using $TS-MD^{(R)}$ was not sufficient, although the device has rigid mechanical property. Rotation of maxilla during distraction forward and downward was also observed. Conclusion: Even though the maxillary advancement with $TS-MD^{(R)}$ device could be achieved, the clinical control of some characteristics related with the device was necessary. More clinical studies on $TS-MD^{(R)}$ should be performed.

  • PDF

Skeletal Stability after Orthognathic Surgery in Severe Skeletal Class III Malocclusion Patients according to Changes in Anteroposterior Discrepancy and Occlusal Planes (골격성 III급 부정교합 환자에서 하악골의 이동량과 교합평면의 변화에 따른 술 후 안정성)

  • Lee, Jung-Han;Kim, Sung-Hee;Baek, Young-Jae;Ahn, Kyung-Yong;Hwang, Dae-Seok;Kim, Yong-Deok;Kim, Uk-Kyu
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.6
    • /
    • pp.404-412
    • /
    • 2012
  • Purpose: The purpose of this study was to evaluate postsurgical facial hard tissue stability after orthognathic surgery with/without posterior impaction in skeletal class III malocclusion patients, and to evaluate the horizontal relapse tendency, according to changes in anteroposterior discrepancy and occlusal planes. Methods: Ninety patients, who had undergone orthognathic surgery in Pusan National University Dental Hospital, were enrolled in this study. Three main groups were classified as follows: Thirty patients underwent mandibular setback bilateral sagittal split ramus osteotomy (BSSRO) only (BSSRO group, BG); another thirty patients underwent mandibular setback BSSRO and Le Fort I osteotomy with posterior impaction (posterior impaction group, PG); and another thirty patients underwent mandibular setback BSSRO and Le Fort I osteotomy without posterior impaction (non-posterior impaction group, NPG). Preoperative (T0), immediate postoperative (T1) and six-month follow-up period (T2) lateral cephalograms were taken, and various parameters were measured. The analyses were done by linear and angular measurements between T0-T1 and T1-T2, to evaluate postsurgical facial hard tissue stability. Results: Mean horizontal relapse rates were distributed from 11.81% to 19.08%, and there were significant postsurgical changes (0.52 mm~2.44 mm) at the B point in all 3 groups. But, there were no statistical differences on relapse rate among BG, PG and NPG patients. Conclusion: In this study, the postsurgical stabilities of BSSRO and Le Fort I osteotomy with/without posterior impaction in skeletal class III malocclusion patients were acceptable. There were no significant statistical differences in mandibular stability according to changes in anteroposterior discrepancy and occlusal planes.

A comparative study on the change of postoperative facial hard tissue profile after maxillary rotational surgery (하악전돌증 환자의 양악 수술 시 상악골 후상방 회전이동 여부에 따른 안면부 경조직 변화량에 대한 비교 연구)

  • Kim, Uk-Kyu;Lee, Sung-Tak;Kim, Tae-Hoon;Song, Jae-Min;Hwang, Dae-Seok;Chung, In-Kyo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.4
    • /
    • pp.264-271
    • /
    • 2011
  • Purpose: This study evaluated retrospectively the postsurgical facial hard tissue profile of a Le Fort I osteotomy with/without posterior impaction and rigid internal fixation to correct mandibular prognathism. After observing a difference between the two groups, this measurement was used to prepare a treatment plan for 2-jaw surgery. Patients and Methods: Thirty patients who had undergone orthognathic surgery in Pusan National University Dental Hospital were enrolled in this study. Fifteen patients were treated using a Le Fort I osteotomy with posterior impaction and mandibular setback bilateral sagittal split ramus osteotomy, and the other fifteen patients were treated without posterior impaction. The preoperative (T0), immediate postoperative (T1) and six-month follow-up period (T2) cephalograms were taken and difference between T1-T0 and T2-T2 was analyzed. Results: Both groups was FH-ABp, SNB and ANB showed significant changes in the measurement, whereas only the posterior impaction group showed a change in the SN-U1, occlusal plane, posterior facial height, surgical movement difference from the L1 and B-point. There was no significant statistical change between the immediate postoperative (T1) and six-month follow-up (T2) hard tissue analysis in the two groups. Conclusion: A Le Fort I osteotomy with posterior impaction is considerable for patients with a flat occlusal plane angle, large posterior facial height, prominent B-point, pogonion and labioversed incisal inclination if the indications are well chosen.

Submentoplasty for esthetic improvement of the neck-lower facial region : Two cases report (하안면과 경부의 심미성 증진을 위한 지방흡입술을 동반한 Submentoplasty 술식: 증례보고)

  • Park, Young-Ju;Nam, Jeong-Hun;Song, Jun-Ho;Yeon, Byung-Moo;Kim, Da-Young;Ahn, Jang-Hun;Gang, Tae-In;Kang, Hae-Jin;Kim, Jun-Hyun
    • The Journal of the Korean dental association
    • /
    • v.47 no.11
    • /
    • pp.750-757
    • /
    • 2009
  • Purpose : The purpose of this study is to evaluate the clinical availability of submentoplasty for esthethic improvement of the cervico-facial region of patients with obtuse chin-neck angle. Materials and methods : Case 1. We evaluate the changes of submental line length and chin-neck angle of 35-year-old woman with skeletal Class III and mandibular excess with excessive submental fat before and after surgery: Bilateral sagittal split ramus osteotomy(BSSRO) setback(5mm), Mandibular Angle Reduction, Reduction Malarplasty and Submentoplasty. In this case, It was done simultaneously with orthognathic surgery. Case 2. The changes of submental line length and chin-neck angle of 20-year-old man with skeletal class III and maxillary defiency were evaluated before surgery, at first surgery : Lefort I osteotomy(6mm posterior Impaction), BSSRO setback(9mm), Paranasal Augmentation and at second surgery: genioplasty(6mm advanced) with submentoplasty. In this case, submentoplasty and advancement genioplasty were done after 2 months post-operative periods. Results : Case 1. In case of the Skeletal Class III mandibular excess with submental fat deposit, It showed the improvement of submental angle and length of submental line after simultaneous submentoplasty. Submental angle is changed from $177^{\circ}$ (pre-op) to $151^{\circ}$ (post-op) and submental line length is changed from 8mm(pre-op) to 36mm(post-op). Case 2. The improvement of submental angle and length of submental line after delayed submentoplasty was aquired in case of the skeletal class III maxillary defiency. Submental angle is changed from $154^{\circ}$ (pre-op) to $161^{\circ}$ (first surgery) and to $153^{\circ}$ (second surgery) and submental line length is changed from 25mm(pre-op) to 19mm(first surgery) and to 23mm(second surgery). Conclusion : The results suggest that Submentoplasty is useful surgical procedure for esthethic improvement of the cervicofacial region of patients with obtuse chin-neck angle.

  • PDF

A safe, stable, and convenient three-dimensional device for high Le Fort I osteotomy

  • Sugahara, Keisuke;Koyachi, Masahide;Odaka, Kento;Matsunaga, Satoru;Katakura, Akira
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.42
    • /
    • pp.32.1-32.4
    • /
    • 2020
  • Background: Le Fort I osteotomy is a highly effective treatment for skeletal jaw deformities and is commonly performed. High Le Fort I osteotomy is a modified surgical procedure performed for improving the depression of the cheeks by setting the osteotomy higher than the conventional Le Fort I osteotomy. Developments in three-dimensional (3D) technology have popularized the use of 3D printers in various institutions, especially in orthognathic surgeries. In this study, we report a safe and inexpensive method of performing a high Le Fort I osteotomy using a novel 3D device and piezosurgery, which prevent tooth root injury without disturbing the operation field for patients with a short midface and long tooth roots. Results: A 17-year-old woman presented with facial asymmetry, mandibular protrusion, a short midface, and long tooth roots. We planned high Le Fort I osteotomy and bilateral sagittal split ramus osteotomy. Prevention of damage to the roots of the teeth and the infraorbital nerve and accurate determination of the posterior osteotomy line were crucial for clinical success. Le Fort I osteotomy using 3D devices has been reported previously but were particularly large in size for this case. Additionally, setting the fixing screw of the device was difficult, because of the risk of damage to the roots of the teeth. Therefore, a different surgical technique, other than the conventional Le Fort I osteotomy and 3D device, was required. The left and right parts of the 3D device were fabricated separately, to prevent any interference in the surgical field. Further, the 3D device was designed to accurately cover the bone surface from the piriform aperture to the infra-zygomatic crest with two fixation points (the anterior nasal spine and the piriform aperture), which ensured stabilization of the 3D device. The device is thin and does not interfere with the surgical field. Safe and accurate surgical performance is possible using this device and piezosurgery. The roots of the teeth and the infraorbital nerve were unharmed during the surgery. Conclusions: This device is considerably smaller than conventional devices and is a simple, low-cost, and efficient method for performing accurate high Le Fort I osteotomy.

Full mouth Rehabilitation with Orthognathic Surgery in Facial Asymmetry Patient : Case Report (안면 비대칭환자의 악교정 수술을 동반한 완전구강회복)

  • Im, So-Min;Shin, Hyoung-Joo;Kim, Dae-Gon;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.3
    • /
    • pp.359-371
    • /
    • 2010
  • Facial asymmetry has been found with a higher frequency (70~84%) in skeletal class III malocclusion patients. Anticipating the poor prognosis of prosthesis due to malocclusion, occlusal stability must be obtained by orthodontic treatment. Moreover, orthodontic surgery would be needed in some severe cases for better functional and esthetic results. The orthognathic surgery is performed on one jaw or two jaw depending on the results of facial diagnosis. Genioplasty may change the vertical, horizontal, sagittal position of chin by osteotomy or augmentation using implants, also. This case is about a 24 year-old male patient who visited our clinic to solve the facial asymmetry and mandibular prognathism. Skeletal class III malocclusion, maxillary canting and menton deviation to left by 13 mm were detected. Multiple ill-fitting prostheses, unesthetic maxillary anterior prostheses, and several dental caries were found. After pre-operative orthodontic treatment, Le-Fort I osteotomy, sagittal split ramus osteotomy, genioplasty, right mandibular angle augmentation were done for the correction of jaw relation and asymmetry. By diagnostic wax-up after post-operative orthodontic treatment, maxillary full mouth rehabilitation and mandibular posterior restorations were planned out. For better result, clinical crown lengthening procedure was done on #11, 12 and implant was placed on left mandibular first molar area. The patient was satisfied with the final prostheses. Because of his high caries risk, long-term prognosis will depend on the consistent maintenance of oral hygiene and periodic follow-up.

Changes of lip morphology following mandibular setback surgery using 3D cone-beam computed tomography images

  • Paek, Seung Jae;Yoo, Ji Yong;Lee, Jang Won;Park, Won-Jong;Chee, Young Deok;Choi, Moon Gi;Choi, Eun Joo;Kwon, Kyung-Hwan
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.38.1-38.10
    • /
    • 2016
  • Background: The aims of this study are to evaluate the lip morphology and change of lip commissure after mandibular setback surgery (MSS) for class III patients and analyze association between the amount of mandibular setback and change of lip morphology. Methods: The samples consisted of 14 class III patients treated with MSS using bilateral sagittal split ramus osteotomy. Lateral cephalogram and cone-beam CT were taken before and about 6 months after MSS. Changes in landmarks and variables were measured with 3D software program $Ondemand^{TM}$. Paired and independent t tests were performed for statistical analysis. Results: Landmarks in the mouth corner (cheilion, Ch) moved backward and downward (p < .005, p < .01). However, cheilion width was not statistically significantly changed. Landmark in labrale superius (Ls) was not altered significantly. Upper lip prominence angle (ChRt-Ls-$ChLt^{\circ}$) became acute. Landmarks in stomion (Stm), labrale inferius (Li) moved backward (p < .005, p < .001). Lower lip prominence angle (ChRt-Li-$ChLt^{\circ}$) became obtuse (p < .001). Height of the upper and lower lips was not altered significantly. Length of the upper lip vermilion was increased (p =< 0.01), and length of the lower lip vermilion was decreased (p < .05). Lip area on frontal view was not statistically significantly changed, but the upper lip area on lateral view was increased and change of the lower lip area decreased (p > .05, p < .005). On lateral view, upper lip prominent point (UP) moved downward and stomion moved backward and upward and the angle of Ls-UP-Stm ($^{\circ}$) was decreased. Lower lip prominent point (LP) moved backward and downward, and the angle of Stm-LP-Li ($^{\circ}$) was increased. Li moved backward. Finally, landmarks in the lower incisor tip (L1) moved backward and upward, but stomion moved downward. After surgery, lower incisor tip (L1) was positioned more superiorly than stomion (p < .05). There were significant associations between horizontal soft tissue and corresponding hard tissue. The posterior movement of L1 was related to statistically significantly about backward and downward movement of cheilion. Conclusions: The lip morphology of patients with dento-skeletal class III malocclusion shows a significant improvement after orthognathic surgery. Three-dimensional lip morphology changes in class III patients after MSS exhibited that cheilion moved backward and downward, upper lip projection angle became acute, lower lip projection angle became obtuse, change of upper lip area on lateral view was increased, change of lower lip area decreased, and morphology of lower lip was protruding. L1 was concerned with the lip tissue change in statistically significant way.

A study on the perimandibular tissues before and after orthodontic treatment with orthognathic surgery in mandandibular prognathic patients (하악골 전돌자의 악교정 수술을 동반한 교정치료 전후 하악골 주위조직의 변화에 관한 연구)

  • Yang, Byung-Ho;Cha, Kyung-Suk
    • The korean journal of orthodontics
    • /
    • v.30 no.2 s.79
    • /
    • pp.261-272
    • /
    • 2000
  • Severe skeletal anteroposterior and vertical discrepancy is difficult to obtain satisfactory result by only orthodontic treatment, and much anteroposterior movement and treatment stability require orthodontic treatment with orthognathic surgery. The treatment goal of mandibular prognathic patients is to promote the function of stomatognathic system including mastication and phonetics, to improve the esthetics of facial profile and to maintain stability. Positional changes of hyoid bone, pharynx and tongue were seen with mandibular movement after orthognathic surgery. This study was performed to observe the changes of perimandibular tissues of orthodontic patients with skeletal mandibular prognathism who treated with orthodontic treatment, and the changes of hyoid bone, pharyx and tongue by relapse or recurrance after before and after orthognathic surgery and retention. The 22 patients who had mandibular prognathism were selected. They treated with orthodontic treatment with sagittal split ramus osteotomy as orthognathic surgery. And lateral cephalometric radiographs were taken 3 times : pre-surgery (T1), immediate post-surgery (T2) and 2 years alter retention (T3). The results were as follows : 1. The hyoid bone returned back after clockwise rotation to maxilla and occlusal plane during retention (P<0.01). 2. The hyoid bone moved posterior-inferiorly by mandibular surgery and returned back anterior-superior after retention. (P<0.01) 3. The changes of pharyngeal depth showed a little decrease at upper area in post- surgery, but it was not a significant difference generally through before, after and retention. 4. In relating to tongue base, the angle of tongue base was decreased and the dorsal area of tongue base moved to inferior-posterior direction and to superior direction again after retention (P<0.01). 5. Related to the thickness of upper and lower lip, the thickness of upper lip decreased after surgery, and the soft tissues below lower lip increased after surgery and decreased after retention.

  • PDF

Use of Human Adipose Tissue as a Source of Endothelial Cells (혈관내피세포 채취의 원천으로 인간 지방조직의 활용)

  • Park, Bong-Wook;Hah, Young-Sool;Kim, Jin-Hyun;Cho, Hee-Young;Jung, Myeong-Hee;Kim, Deok-Ryong;Kim, Uk-Kyu;Kim, Jong-Ryoul;Jang, Jung-Hui;Byun, June-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.4
    • /
    • pp.299-305
    • /
    • 2010
  • Purpose: Adipose tissue is located beneath the skin, around internal organs, and in the bone marrow in humans. Its main role is to store energy in the form of fat, although it also cushions and insulates the body. Adipose tissue also has the ability to dynamically expand and shrink throughout the life of an adult. Recently, it has been shown that adipose tissue contains a population of adult multipotent mesenchymal stem cells and endothelial progenitor cells that, in cell culture conditions, have extensive proliferative capacity and are able to differentiate into several lineages, including, osteogenic, chondrogenic, endothelial cells, and myogenic lineages. Materials and Methods: This study focused on endothelial cell culture from the adipose tissue. Adipose tissues were harvested from buccal fat pad during bilateral sagittal split ramus osteotomy for surgical correction of mandibular prognathism. The tissues were treated with 0.075% type I collagenase. The samples were neutralized with DMEM/and centrifuged for 10 min at 2,400 rpm. The pellet was treated with 3 volume of RBC lysis buffer and filtered through a 100 ${\mu}m$ nylon cell strainer. The filtered cells were centrifuged for 10 min at 2,400 rpm. The cells were further cultured in the endothelial cell culture medium (EGM-2, Cambrex, Walkersville, Md., USA) supplemented with 10% fetal bovine serum, human EGF, human VEGF, human insulin-like growth factor-1, human FGF-$\beta$, heparin, ascorbic acid and hydrocortisone at a density of $1{\times}10^5$ cells/well in a 24-well plate. Low positivity of endothelial cell markers, such as CD31 and CD146, was observed during early passage of cells. Results: Increase of CD146 positivity was observed in passage 5 to 7 adipose tissue-derived cells. However, CD44, representative mesenchymal stem cell marker, was also strongly expressed. CD146 sorted adipose tissue-derived cells was cultured using immuno-magnetic beads. Magnetic labeling with 100 ${\mu}l$ microbeads per 108 cells was performed for 30 minutes at $4^{\circ}C$ a using CD146 direct cell isolation kit. Magnetic separation was carried out and a separator under a biological hood. Aliquous of CD146+ sorted cells were evaluated for purity by flow cytometry. Sorted cells were 96.04% positivity for CD146. And then tube formation was examined. These CD146 sorted adipose tissue-derived cells formed tube-like structures on Matrigel. Conclusion: These results suggest that adipose tissue-derived cells are endothelial cells. With the fabrication of the vascularized scaffold construct, novel approaches could be developed to enhance the engineered scaffold by the addition of adipose tissue-derived endothelial cells and periosteal-derived osteoblastic cells to promote bone growth.

Three Dimensional Study on the Postoperative Stability after Advancement of Maxilla Using Le Fort I Osteotomy (Le Fort I 골절단술을 이용한 상악골 전진 후 안정성에 관한 3차원적 연구)

  • Oh, Chul-Jung;Hur, Jung-Woo;Chung, Kwang;Cho, Min-Sung;Jung, Seunggon;Park, Hong-Ju;Oh, Hee-Kyun;Ryu, Sun-Youl;Kook, Min-Suk
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.2
    • /
    • pp.82-87
    • /
    • 2013
  • Purpose: This study evaluated postoperative maxillary stabilities in patients with skeletal Class III malocclusion who were taken both maxillary advancement surgery and mandibular retrusive surgery, using Le Fort I osteotomy, through three-dimensional computed tomography. Methods: We selected 14 patients who were taken postoperative three-dimensional computerized tomography at the time before surgery, immediately after surgery, six months after surgery among the patients undergone both maxillary advancement surgery using Le Fort I osteotomy and mandibular retrusive surgery using bilateral sagittal split ramus osteotomy. We measured and compared the vertical distance of A-point and posterior nasal spine (PNS), the horizontal distance of A-point and PNS in transverse plane and coronal plane of the three-dimensional reconstructed images, respectively. Results: In transverse plane, the distance difference between immediately after surgery ($S_1$) and immediately before surgery ($S_0$) of A-point was $-0.04{\pm}1.80$ mm, $S_2$ and $S_0$ was $-0.15{\pm}1.69$ mm, and between $S_1$ and $S_2$ was $0.11{\pm}0.58$ mm. There were no significant differences between these data (P>0.05). In transverse plane, the distance between $S_1-S_0$ of PNS was $-3.87{\pm}2.37$ mm, $S_2-S_0$ of PNS was $-3.79{\pm}2.39$ mm, and $S_1-S_2$ of PNS was $-0.08{\pm}0.18$ mm. There were significant differences between these data (P<0.05). In coronal plane, the distance between $S_1-S_0$ of A-point was $3.99{\pm}0.86$ mm, $S_2-S_0$ was $3.57{\pm}1.09$ mm, and $S_1-S_2$ was $0.42{\pm}0.42$ mm. There were significant differences between these data (P<0.05). In coronal plane, the distance between $S_1-S_0$ of PNS was $3.82{\pm}0.96$ mm, $S_2-S_0$ was $3.43{\pm}0.91$ mm, and $S_1S_2$ was $0.39{\pm}0.49$ mm. There were significant differences between these data (P<0.05). In transverse plane, it was estimated that PNS has no statistical postoperative stability in the same direction. In coronal plane, it was estimated that both A-point and PNS had no statistical postoperative stability (P<0.05). Conclusion: Clinically, the operation plan needs to take into account of the maxillary relapse.