• Title/Summary/Keyword: Safety-enhanced ITS

Search Result 146, Processing Time 0.024 seconds

Effects of Dextrin and β-cyclodextrin on Protective Effect of Hovenia dulcis Fruit Extract Against Alcohol-induced Liver Damage in vivo (Dextrin과 β-cyclodextrin이 생체 내에서 헛개나무 추출물의 알코올성 손상으로부터 간보호에 미치는 영향)

  • Hong, Cheol Yi;Kim, Jin Beom;Noh, Hae-Ji;Na, Chun-Soo
    • Journal of Food Hygiene and Safety
    • /
    • v.30 no.1
    • /
    • pp.115-119
    • /
    • 2015
  • ${\beta}$-cyclodextrin has an ability to protect compounds from oxidative reaction by collecting them within its ring-like structure. So, In harsh condition ($40^{\circ}C$), marker compound, quercetin, was dramatically reduced in Hovenia dulcis fruit extract containing dextrin at 4 and 8 week compared to 0 week, but not that containing ${\beta}$-cyclodextrin. To evaluate the effects of dextrin and ${\beta}$-cyclodextrin on protective effect of H.dulcis fruit extract against alcohol-induced liver damage, The mice were orally injected alcohol, H. dulcis fruit extract/dextrin (HD) and H. dulcis fruit extract/${\beta}$-cyclodextrin (HCD), respectively, for 7 days. The mice orally administrated with alcohol significantly enhanced the serum concentration of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and the activity of lactate dehydrogenase (LDH) in serum compared to the control group. HD and HCD significantly decreased the levels of serum ALT and AST and serum LDH activities compared to alcohol group. And also alcohol group significantly increased the level of total cholesterol compared to the control group, but HD and HCD significantly reduced it compared to the alcohol group. However, the levels of TG in blood were not significantly changed in all groups. The activities of alcohol dehydrogenase (ADH) were significantly increased in HD and HCD group although those of aldehyde dehydrogenase showed an increasing tendency. This data suggested that HD and HCD were able to induce alcohol degradation in the liver tissues. All together, the results showed that HCD demonstrated their ability to protect liver from alcohol-induced damage on equal terms with HD.

Experimental Study on Soot Formation in Opposed-Flow Ethylene Diffusion Flames by Mixing DME as an Alternative Fuel (대체 연료인 DME 혼합에 의한 대향류 에틸렌 확산화염내 매연 생성에 대한 실험적 연구)

  • Yoon, Doo-Ho;Yoon, Seok-Hun;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.3
    • /
    • pp.301-306
    • /
    • 2010
  • DME(Di-Methyl Ehter, $CH_3OCH$) is currently attracting worldwide attention due to its environmentally friendly characteristics. Until now it was researched as a major alternative fuel of diesel automobile because it is a clean fuel producing low soot. Therefore, in this study, in order to investigate the effect of DME mixing on number density and size of soot particle, DME has been mixed in opposed-flow ethylene diffusion flame with the mixture ratios 5%, 14% and 30%. A laser extinction/scattering technique has been adopted to measure the volume fraction, number density, and size of soot particles. The experimental results showed that the soot concentration of mixture flames with the mixture ratios 5% and 14% produces soot more, even though that of 30% was decreased. This means that even though DME has been known to be a clean fuel for soot formation, the mixing of DME in diffusion flame of ethylene, where acetylene maintains high concentration in soot formation regions, could produce enhanced production of soot.

Quantitative Assessment on Contributions of Foreign NOx and VOC Emission to Ozone Concentrations over Gwangyang Bay with CMAQ-HDDM Simulations (CMAQ-HDDM을 이용한 광양만 오존 농도의 국외 기여도 분석)

  • Bae, Changhan;Kim, Byeong-Uk;Kim, Hyun Cheol;Kim, Soontae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.5
    • /
    • pp.708-726
    • /
    • 2018
  • In this study, we examined the contribution of nitrogen oxides and volatile organic compounds emitted from China and Japan to ozone concentrations over Gwangyang-bay, South Korea. We used a chemical transport model, Community Multi-scale Air Quality model, and its instrumented sensitivity tool, High-order Decoupled Direct Method. Intercontinental Chemical Transport Experiment-Phase B 2006 for East Asia and Clean Air Policy Support System 2007 emissions inventories for South Korea were used for the ozone simulation. During the study period, May 2007, the modeled maximum daily 8-hr average ozone concentration among seven air quality monitors in Gwangyang-bay was 68.8 ppb. The contribution of $NO_x$ emissions from China was 19.5 ppb (28%). The highest modeled ozone concentrations and Chinese contributions appeared when air parcels were originated from Shanghai area. The observed 8-hr average ozone concentrations in Gwangyang Bay exceeded the national ambient air quality standard (60 ppb) 203 times by daytime and 56 times by nighttime during the period. It was noticed that many exeedances happened when contribution of Chinese emissions to ozone concentrations over the area increased. Sensitivity analysis shows that a reduction in Chinese $NO_x$ and VOC emissions by 15% could lessen the total exceedance hours by 24%. This result indicates that high ozone concentrations over Gwangyang-bay are strongly enhanced by Chinese emissions.

Development of FBG Accelerometer for Railway Tunnel Vibration (철도터널 진동 모니터링을 위한 광섬유 가속도계 개발)

  • Lee, Su-Hyung;Shin, Min-Ho;Kim, Hyun-Ki;Lee, Kyu-Wan
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.4
    • /
    • pp.364-369
    • /
    • 2011
  • For the safety management of tunnel, effective measurements should be continuously carried out. Most of sensors currently being applied for tunnels measure only the local status, thus many of them are needed to monitor an entire tunnel. For the railway tunnel where trains of same conditions are regularly operated, dynamic responses of tunnel structure to train operations can be a good index to estimate the deformation of tunnel structure in wide area. Meanwhile, the electromagnetic interference caused by overhead centenary in railway tunnel obstructs the use of electric-based sensors. In this study a brand new accelerometer using FBG optical fiber sensors is developed to solve these problems. Sensitivity and capacity of the accelerometer are enhanced with effective structural design of its components and verified with laboratory tests. A case history where the developed accelerometers were applied to a safety monitoring system of a high-speed train tunnel is presented. The performances of the developed accelerometers are validated from the measured acceleration data.

Enhanced Expression and Functional Characterization of the Recombinant Putative Lysozyme-PMAP36 Fusion Protein

  • Rao, Zhili;Kim, So Young;Akanda, Md Rashedunnabi;Lee, Su Jin;Jung, In Duk;Park, Byung-Yong;Kamala-Kannan, Seralathan;Hur, Jin;Park, Jung Hee
    • Molecules and Cells
    • /
    • v.42 no.3
    • /
    • pp.262-269
    • /
    • 2019
  • The porcine myeloid antimicrobial peptide (PMAP), one of the cathelicidin family members, contains small cationic peptides with amphipathic properties. We used a putative lysozyme originated from the bacteriophage P22 (P22 lysozyme) as a fusion partner, which was connected to the N-terminus of the PMAP36 peptide, to markedly increase the expression levels of recombinant PMAP36. The PMAP36-P22 lysozyme fusion protein with high solubility was produced in Escherichia coli. The final purified yield was approximately 1.8 mg/L. The purified PMAP36-P22 lysozyme fusion protein exhibited antimicrobial activity against both Gram-negative and Grampositive bacteria (Staphylococcus aureus, Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa, and Bacillus subtilis). Furthermore, we estimated its hemolytic activity against pig erythrocytes as 6% at the high concentration ($128{\mu}M$) of the PMAP36-P22 lysozyme fusion protein. Compared with the PMAP36 peptide (12%), our fusion protein exhibited half of the hemolytic activity. Overall, our recombinant PMAP36-P22 lysozyme fusion protein sustained the antimicrobial activity with the lower hemolytic activity associated with the synthetic PMAP36 peptide. This study suggests that the PMAP36-P22 lysozyme fusion system could be a crucial addition to the plethora of novel antimicrobials.

Gear Analysis of Hydro-Mechanical Transmission System using Field Load Data (필드 부하를 활용한 정유압기계식 변속시스템의 기어 해석)

  • Kim, Jeong-Gil;Lee, Dong-Keun;Oh, Joo-Young;Nam, Ju-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.111-120
    • /
    • 2021
  • A tractor is an agricultural machine that performs farm work, such as cultivation, soil preparation, loading, bailing, and transporting, through attached working implements. Farm work must be carried out on time per the growing season of crops. As a result, the reliability of a tractor's transmission is vital. Ideally, the transmission's design should reflect the actual load during agricultural work; however, configuring such a measurement system is time- and cost-intensive. The design and analysis of a transmission are, therefore, mainly performed by empirical methods. In this study, a tractor with a measurement system was used to measure the actual working load in the field. Its hydro-mechanical transmission was then analyzed using the measured load. It was found that the velocity factor, load distribution factor, lubrication factor, roughness factor, relative notch sensitivity factor, and life factor affect the gear strength of the transmission. Also, loading conditions have a significant influence on the reliability of the transmission. It is believed that transmission reliability can be enhanced by analyzing the actual load on the transmission, as performed in this study.

Development of Quantitative Analysis Methodology on Environmental Effect through Adaptation of Advanced Safety Vehicle (첨단차량 도입 시를 고려한 환경적 효과의 정량적 분석 방법론 개발)

  • Choi, Ji-Eun;Bae, Sang-Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.6
    • /
    • pp.94-104
    • /
    • 2010
  • The capacity of highway is restricted and traffic congestion is caused by increasing traffic demand. Also, greenhouse gases are increased by traffic congestion. CDM (Clean Development Mechanism) is an idea of interest to reduce greenhouse gases. However, CDM's cases applied in traffic field are rare. Thus, it is necessary that methodology to reduce greenhouse gas should be developed and applied to CDM. A methodology for identifying greenhouse gas emissions was developed in this paper. This methodology was developed on the basis of baseline methodology registered at UN. Travel time and speed in the conventional traffic condition and in the automated traffic condition are compared by BPR function. The calculated speed applied to emission factor equation and then $CO_2$ emissions was calculated. A simulation was executed to evaluate the validity of the developed methodology. In the result, advanced vehicle's $CO_2$ emissions are more than conventional vehicle's $CO_2$ emissions in the stable flow condition. However, advanced vehicle's $CO_2$ emissions are less than conventional vehicle's $CO_2$ emissions in the unstable flow condition. It is assure that capacity of highway is enhanced and efficiency of highway is improved by adopting advanced safety vehicle in the smart road.

Development A Standard of Traffic Signal Controller and Expectations of Standardization (교통신호제어기 표준 규격 개발)

  • Jeong Jun-Ha;Ahn Gye-Hyung;Oh Young-Tae;Go Gwang-Yong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.5 no.1 s.9
    • /
    • pp.31-43
    • /
    • 2006
  • As of March 2005, the standard of traffic signal controllers became effective. The standard presents specifications and functions of a traffic signal controller which collects traffic information, sends it to the traffic control center, and controls traffic signal with adequate traffic signal timing provided by the traffic control center. Since the controllers by the previous standard lack parts compatibility and have different control functions and communication protocol, the maintenance cost has been increased. Also, some important functions like conflict detection have not worked out perfectly. To overcome these disadvantages, first of all, this standard secures hardware compatibility. Conflict detection method has been enhanced. Communication protocol to the traffic control center was included in the standard. With this standard, independent maintenance system and prompt treatment of hardware malfunctions becomes possible. Also, the unified intersection traffic control method will increase traffic safety.

  • PDF

Next Generation Dairy Processing Science and Technology: Functional and Rational in Dairy Industry

  • Charchoghlyan, Haykuhi
    • Journal of Dairy Science and Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.167-170
    • /
    • 2015
  • The dairy industry, as part of the broader agricultural sector, is classified as a basic industry to the Korea economy. Basic industries provide income to a region by producing an output, purchasing production inputs, services and labor. An integrated, multidisciplinary approach for the next generation of dairy products with added health benefits represent the direct economic contribution. The commercialization of "nutritional" functional foods can only be successful if the consumer is confident in the scientific validity of the claims. Modern biotechnologies such as genomics, genetic expression and biomarkers of health performance suggested to whole dairy products, such as fluid milk, butter, cheese, ice cream and frozen dessert products (German, 1999). The following definition makes the point that dairy products can provide a nutritional value beyond the basic nutritional requirements: 1) The dairy industry has the opportunity to improve the health and well-being of its customers and/or to reduce their risk of disease through dairy products with added activities. 2) Functional dairy products are those that can be demonstrated to benefit target functions in the body in a way that improves the state of health and /or reduces the risk of disease. They are food products that are consumed as part of a normal diet rather than pills or supplements. 3) Dairy products based on functionality will need to link the scientific basis of such functionality to the communication of its benefit to the general public. 4) Both the efficacy and the safety of the food components with health benefits will require evidence based on the measurement of scientific biomarkers relevant to their biological responses and health end points. 5) Sound evidence from human studies based on intermediate health end points using accepted biomarkers will provide the basis for promotional messages divided into two categories-enhanced function and reduced risk of disease. 6) Success in solving key scientific and technological challenges will only be achieved by interdisciplinary research programs to exploit the scientific concepts in functional dairy science.

  • PDF

Process fault diagnostics using the integrated graph model

  • Yoon, Yeo-Hong;Nam, Dong-Soo;Jeong, Chang-Wook;Yoon, En-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1705-1711
    • /
    • 1991
  • On-line fault detection and diagnosis has an increasing interest in a chemical process industry, especially for a process control and automation. The chemical process needs an intelligent operation-aided workstation which can do such tasks as process monitoring, fault detection, fault diagnosis and action guidance in semiautomatic mode. These tasks can increase the performance of a process operation and give merits in economics, safety and reliability. Aiming these tasks, series of researches have been done in our lab. Main results from these researches are building appropriate knowledge representation models and a diagnosis mechanism for fault detection and diagnosis in a chemical process. The knowledge representation schemes developed in our previous research, the symptom tree model and the fault-consequence digraph, showed the effectiveness and the usefulness in a real-time application, of the process diagnosis, especially in large and complex plants. However in our previous approach, the diagnosis speed is its demerit in spite of its merits of high resolution, mainly due to using two knowledge models complementarily. In our current study, new knowledge representation scheme is developed which integrates the previous two knowledge models, the symptom tree and the fault-consequence digraph, into one. This new model is constructed using a material balance, energy balance, momentum balance and equipment constraints. Controller related constraints are included in this new model, which possesses merits of the two previous models. This new integrated model will be tested and verified by the real-time application in a BTX process or a crude unit process. The reliability and flexibility will be greatly enhanced compared to the previous model in spite of the low diagnosis speed. Nexpert Object for the expert system shell and SUN4 workstation for the hardware platform are used. TCP/IP for a communication protocol and interfacing to a dynamic simulator, SPEEDUP, for a dynamic data generation are being studied.

  • PDF