• 제목/요약/키워드: Safety system design

검색결과 3,807건 처리시간 0.031초

시뮬레이션을 통해 안전성 검증을 위한 개선된 SysML 기반 고장 모델 (An Improved SysML-Based Failure Model for Safety Verification By Simulation)

  • 김창원;이재천
    • 한국산학기술학회논문지
    • /
    • 제19권10호
    • /
    • pp.410-417
    • /
    • 2018
  • 현대의 시스템은 지속적으로 대형화, 복잡화되어 왔기 때문에 시스템의 오류 발생 가능성이 커졌다. 시스템의 고장은 안전 사고를 발생시키고, 인명과 재산상의 막대한 피해를 줄 수 있다. 이러한 이유로 미 국방성과 IEC 등의 국제표준기구에서는 시스템의 안전성을 확보하기 위한 안전 관련 국제표준을 제정하였고, 시스템 설계와 안전 활동이 통합적으로 수행되어야 함을 권고하였다. 이에 따라 최근의 연구들은 모델기반 시스템 설계를 진행함과 동시에 모델을 활용하여 시스템의 안전성 검증을 수행하였다. 하지만 시스템 설계를 위한 모델과 안전성 분석 및 검증을 위한 고장모델을 서로 다른 모델링 언어를 기반으로 생성하였기 때문에 시스템 설계와 안전 활동이 통합적으로 수행되지 못하였다. 또한, UML 또는 SysML 기반으로 고장모델을 활용하여 안전 요구사항을 도출한 연구들은 안전 분석 및 검증에 고장모델이 제한적으로 활용되었다. 이와 같은 문제점을 해결하기 위해서 기존의 고장모델 활용법을 확장 시킬 필요가 있다. 우선 시스템 설계와 안전성 검증 활동을 통합적으로 수행할 수 있는 개선된 SysML 기반의 고장모델을 생성해야 한다. 다음으로 이 고장모델을 활용하여 도출된 안전요구사항이 시스템 설계에 제대로 반영되었는지 검증할 수 있어야 한다. 따라서 본 논문에서는 개선된 SysML 기반 고장모델의 개념과 생성 절차를 제시하였고, 자동차 시스템에 대한 고장모델을 생성하였다. 또한, 자동차 시스템의 안전성을 검증하기 위해서 고장모델의 시뮬레이션을 수행하였다. 이를 통해서 개선된 SysML 기반 고장모델을 활용하여 시스템 설계와 안전성 검증 활동을 수행할 수 있음을 보였다.

Optimization of preventive maintenance of nuclear safety-class DCS based on reliability modeling

  • Peng, Hao;Wang, Yuanbing;Zhang, Xu;Hu, Qingren;Xu, Biao
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3595-3603
    • /
    • 2022
  • Nuclear safety-class DCS is used for nuclear reactor protection function, which is one of the key facilities to ensure nuclear power plant safety, the maintenance for DCS to keep system in a high reliability is significant. In this paper, Nuclear safety-class DCS system developed by the Nuclear Power Institute of China is investigated, the model of reliability estimation considering nuclear power plant emergency trip control process is carried out using Markov transfer process. According to the System-Subgroup-Module hierarchical iteration calculation, the evolution curve of failure probability is established, and the preventive maintenance optimization strategy is constructed combining reliability numerical calculation and periodic overhaul interval of nuclear power plant, which could provide a quantitative basis for the maintenance decision of DCS system.

해외 유사 제도 비교분석을 통한 설계안전성검토 개선 방안 (Improvements of Design For Safety in Korea based on the Comparative Analysis with Other Countries)

  • 김시은;정재민;정재욱
    • 한국안전학회지
    • /
    • 제34권6호
    • /
    • pp.38-49
    • /
    • 2019
  • While the overall industrial accident rate has been decreased, but those of the construction industry has not been. For safety management during the planning/design phase, which accounts for 45% of the cause of accident at the construction site, Design For Safety (DFS) was established to minimize a hazard and risk in 2016. Currently, DFS system has difficulty settling down in Korea due to the several reasons. So, this paper aims to propose to the Key Success Factor (KSF) and related action plan to improve DFS system. This study was conducted by following 2 steps: i) identification of problems on current DFS, and ii) proposal of KSF and following action plan for DFS. The DFS in Korea was compared with UK, Singapore, Australia, and US on 7 criteria (application target, execution period, change of design, collaboration among participants, expert participants, alternative review and decision support system). DFS was compared with other countries's system based on the identical criteria and the corresponding improvement measures were also proposed. The results of this study can be utilized to improve DFS system in various aspects.

설계안전성 검토(DfS) 발전방안 (Development Plan of Design for Safety in Construction)

  • 신주열
    • 터널과지하공간
    • /
    • 제27권6호
    • /
    • pp.351-356
    • /
    • 2017
  • 본 연구는 발주자 중심의 건설현장 안전관리 방안의 하나로 최근 도입된 설계안전성검토(DfS)의 추진현황을 소개하고 문제점 및 개선방안을 제시한 것이다. 설계안전성 검토는 그동안 시공단계 위주의 시공사 중심의 안전관리에서 발주자 중심의 안전관리체계로 전환하면서 발주자로 하여금 발주자 중심으로 설계단계에서부터 안전을 고려한 설계를 실시토록 하였다. 발주자는 안전을 고려한 설계의 적정성을 검토하고 승인하도록 하였으며, 설계 시 배제하지 못한 위험요소는 시공사로 하여금 시공단계에서 작성하는 안전관리계획 수립 시 위험요소를 제거하도록 계획하고 시공토록 하여 건설현장의 재해를 예방하기 위한 제도이다. 2016년 5월부터 시행된 설계안전성검토 제도를 더욱 발전시켜 현장에서 발생될 수 있는 안전사고 위험요소를 사전에 예방하여 건설공사 사고 저감에 크게 기여할 것이다. 또한 지속적인 위험요소 발굴 및 시스템 개선을 통해 더욱 효율적이고 편리한 제도로 발전시켜가는 방안을 제시하였다.

A Design Procedure for Safety Simulation System Using Virtual Reality

  • Jae-seug Ki
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 1999년도 추계학술대회
    • /
    • pp.381-389
    • /
    • 1999
  • One of the objectives of any task design is to provide a safe and helpful workplace for the employees. The safety and health module may include means for confronting the design with safety and health regulations and standards as well as tools for obstacles and collisions detection (such as error models and simulators). Virtual Reality is a leading edge technology which has only very recently become available on platforms and at prices accessible to the majority of simulation engineers. The design of an automated manufacturing system is a complicated, multidisciplinary task that requires involvement of several specialists. In this paper, a design procedure that facilitates the safety and ergonomic considerations of an automated manufacturing system are described. The procedure consists of the following major steps: Data collection and analysis of the data, creation of a three-dimensional simulation model of the work environment, simulation for safety analysis and risk assessment, development of safety solutions, selection of the preferred solutions, implementation of the selected solutions, reporting, and training When improving the safety of an existing system the three-dimensional simulation model helps the designer to perceive the work from operators point of view objectively and safely without the exposure to hazards of the actual system.

  • PDF

산업용 드론을 이용한 잣수확용 해머링 시스템의 구조해석 (Structural Analysis of Hammering System for Pine Cone Harvest using Industrial Drone)

  • 김기홍;배대원;최원식
    • 한국산업융합학회 논문집
    • /
    • 제26권2_2호
    • /
    • pp.285-291
    • /
    • 2023
  • In this paper, in order to secure the safety and productivity of pine cone harvest, modeling and structural analysis of the hammering system for pine cone harvest drone that can easily access pine cone of Pinus koraiensis and collide with them to harvest them was performed. It calculate the equivalent stress for the structure of the hammering system and the yield strength of the applied material by applying the shear force of the stalk at which the pine cone is separated from the branch, and it is to verify the safety of the structure and propose an optimal design through appropriate factor of safety and design change. The shear force of the stalk at which the pine cone was separated from the branch was 468 N, and was applied to both ends of the hammering system. The yield strength of SS400 steel used in the hammering system is 245 ㎫, and the design change and structural analysis were performed so that the Von Mises stress could be less than 122.5 ㎫ by applying the factor of safety of 2.0 or more. As a result of the structural analysis of the frist modeling, the Von Mises stress was 220.3 ㎫, the factor of safety was 1.12, and the stress was concentrated in the screw fastening holes. As a result of the design change of the screw fastening holes, the Von Mises stress was 169.4 ㎫, the factor of safety was 1.45, and the stress was concentrated on the side part. As a result of the design change by changing screw fastening holes and adding ribs, the Von Mises stress was 121.6 ㎫, and the factor of safety was 2.02. The safety of the hammering system was secured with an optimal design with little change in mass. There was no deformation or damage as a result of experimenting on pine cone harvest by manufacturing the hammering system with an optimal design.

Safety Critical 시스템에서 사고의 예방동작간 충돌 분석 기법 (A Collision Analysis Technique for Prevention Actions of Accident in Safety Critical System)

  • 권장진;홍장의
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권10호
    • /
    • pp.661-668
    • /
    • 2013
  • Safety Critical 시스템은 시스템의 기능적인 실패 또는 예기치 못한 상황의 발생으로 인해 인명피해, 재산피해, 환경 피해와 같은 치명적인 사고를 초래할 수 있는 시스템을 의미한다. 그러므로 Safety Critical 시스템의 안전을 보장하기 위해서는 시스템 설계 단계에서 시스템에 존재할 수 있는 위험성들이 충분히 고려되어야 하며, 사고가 발생했을 시 피해를 최소화시키기 위한 일련의 예방 동작들이 설계되어야 한다. 현재에는 Safety Critical 시스템의 설계 단계에서 위험성을 식별하고 분석하기 위한 많은 방법들이 연구되었으며, 이 중에는 예기치 못한 사건으로 인한 피해를 예방하는 동작들의 성공 여부를 분석하는 기법도 존재한다. 본 연구에서는 위의 예방 동작들의 성공 여부에 대한 분석뿐만 아니라 기존 연구들에서 언급하지 못한 예방 동작들 간의 충돌과 이로 인해 발생할 수 있는 피해를 분석하는 방법을 제시하고자 한다. 제안한 방법을 통해 Safety Critical 시스템의 안전성이 견고해지고 피해 예방을 위한 동작들의 올바른 설계에 도움이 될 수 있을 것이다.

Level 1 probabilistic safety assessment of supercritical-CO2-cooled micro modular reactor in conceptual design phase

  • So, Eunseo;Kim, Man Cheol
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.498-508
    • /
    • 2021
  • Micro reactors are increasingly being considered for utilization as distributed power sources. Hence, the probabilistic safety assessment (PSA) of a direct supercritical-CO2-cooled fast reactor, called micro modular reactor (MMR), was performed in this study; this reactor was developed using innovative design concepts. It adopted a modular design and passive safety systems to minimize site constraints. As the MMR is in its conceptual design phase, design weaknesses and valuable safety insights could be identified during PSA. Level 1 internal event PSA was carried out involving literature survey, system characterization, identification of initiating events, transient analyses, development of event trees and fault trees, and quantification. The initiating events and scenarios significantly contributing to core damage frequency (CDF) were determined to identify design weaknesses in MMR. The most significant initiating event category contributing to CDF was the transients with the power conversion system initially available category, owing to its relatively high occurrence frequency. Further, an importance analysis revealed that the safety of MMR can be significantly improved by improving the reliability of reactor trip and passive decay heat removal system operation. The findings presented in this paper are expected to contribute toward future applications of PSA for assessing unconventional nuclear reactors in their conceptual design phases.

재사용 시스템비계와 시스템동바리 수직재의 허용강도 분석 (Analysis of Allowable Strength of Reused Vertical Members of System Scaffolds and System Supports)

  • 박진석;고상섬;원정훈
    • 한국안전학회지
    • /
    • 제36권4호
    • /
    • pp.29-36
    • /
    • 2021
  • The allowable strength based on experiments and the design allowable strength calculated using the design criteria were compared, which suggested a ratio between the allowable strengths for the reused vertical members of the system scaffolding and system support. By investigating a total of 421 certification reports for reused vertical members, the experimental allowable strengths were collected. Using design criteria such as the road bridge design and KDS 14 30 10, the design allowable strengths were calculated for various slenderness ratios. For the system scaffolding, the average ratio between the experimental and design allowable strengths was calculated to be 0.880 by assuming a normal distribution for all specimens. However, by analyzing the strength ratio according to the slenderness ratio, the lowest average strength ratio was found to be at least 0.844. Therefore, it is reasonable to assume that the allowable strength of the reused vertical members was 80-84% of the design allowable strength. In addition, assuming the allowable strength to be 85% of the design allowable strength is a possible method for reused vertical members of system supports.

Risk-informed design optimization method and application in a lead-based research reactor

  • Jiaqun Wang;Qianglong Wang;Jinrong Qiu;Jin Wang;Fang Wang;Yazhou Li
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2047-2052
    • /
    • 2023
  • Risk-informed approach has been widely applied in the safety design, regulation, and operation of nuclear reactors. It has been commonly accepted that risk-informed design optimization should be used in the innovative reactor designs to make nuclear system highly safe and reliable. In spite of the risk-informed approach has been used in some advanced nuclear reactors designs, such as Westinghouse IRIS, Gen-IV sodium fast reactors and lead-based fast reactors, the process of risk-informed design of nuclear reactors is hardly to carry out when passive system reliability should be integrated in the framework. A practical method for new passive safety reactors based on probabilistic safety assessment (PSA) and passive system reliability analyze linking is proposed in this paper. New three-dimension frequency-consequence curve based on risk concept with three variables is used in this method. The proposed method has been applied to the determination optimization of design options selection in a 10 MWth lead-based research reactor(LR) to obtain one optimized system design in conceptual design stage, using the integrated reliability and probabilistic safety assessment program RiskA, and the computation resources and time consumption in this process was demonstrated reasonable and acceptable.