• Title/Summary/Keyword: Safety risk

Search Result 5,937, Processing Time 0.031 seconds

Risk factors and fisher positioning task during coastal gillnet fishing boat operation using UWB based positioning system (UWB 기반 측위시스템을 이용한 연안자망어선 어선원의 작업위치와 위험요소)

  • Kyung-Jin RYU;Su-Hyung KIM;Kyunghun LEE;Sunghun KIM;Sung-Jae WON;Yoo-Won LEE
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.2
    • /
    • pp.152-160
    • /
    • 2024
  • We analyzed risk factors of coastal gillnet fishers during fishing process and considered work safety measures to reduce safety accidents during fishing using a UWB (ultra wideband) based positioning system. The static position accuracy of the UWB based positioning system was 45 cm. When entering a port, there is a risk of falling overboard. When casting a net, there was a risk of falling overboard due to being hit by fishing gear or guards, or getting caught in a buoy line or sinker line. When hauling a net, there is a risk of getting caught between fishing gear and net hauler, and the risk of musculoskeletal disorders due to repetitive work over a long period of time. Most safety accidents during work on fishing boats are blamed on human errors of the fisher and skipper, but safety accidents occur due to a mixture of mechanical and equipment factors, work and environmental factors, and management factors in addition to human errors. Therefore, the 4E were presented as countermeasures against the 4M, which are causes of safety accidents, and the proposed measures were used to identify risk factors for operation process, comply with work safety rules, and ensure the wearing of personal protective equipments. We need to reduce safety accidents during work by making it part of our daily routine. These research results can be used in the future for optimal placement of fishing gear and fishing nets in other coastal industries where safety accidents occur frequently.

Natech Risk Assessment of Chemical Facilities in the Event of Earthquake in Korea using RAPID-N (RAPID-N을 이용한 국내 지진 발생 시 화학시설 Natech 위험성 평가)

  • Park, Jaehyuk;Yeon, Eungjin;Lee, Hak Tae;Jung, Seungho
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.4
    • /
    • pp.111-118
    • /
    • 2019
  • Accidents occurring due to natural disasters in chemical process facilities where technologies are concentrated can cause secondary damage. The concept of the relationship between natural disasters and highly intensive technologies has evolved into the Natech (Natural Hazards Triggered Technological Disaster) research. Currently, the number of earthquakes is increasing all over the Korean peninsula. To assess the risk of Natech when an earthquake has occurred in South Korea, the Rapid Natech Risk Assessment Tool (RAPID-N) developed by the European Commission's Joint Research Center (EC JRC) was used in the present study. The RAPID-N can be used for Natech risk assessment based on mapping and can be utilized for sufficient preparation for reduction of the effects of Natech accidents. A total of 261 chemical facilities actually existing in Pohang were initially analyzed to select eight facilities and the Pohang earthquake that occurred in 2017 was implemented in the RAPID-N utilizing the shake map. High risk areas were selected through Natech risk assessments for the selected eight work places and countermeasures for the areas were suggested. High risk areas exist depending on the location, since the damage influence ranges could be overlapped and each chemical facility has an independent probability of Natech. Therefore, studies on Natech emergency plans and emergency evacuation routes should be actively conducted considering such high risk areas. The present study was conducted to demonstrate the feasibility of Natech risk assessment in South Korea through the RAPID-N. These findings can be used as a reference material to lay a foundation for Natech risk assessment and related policies in South Korea.

Assessment of Chemical Risks in Moroccan Medical Biology Laboratories in Accordance with the CLP Regulation

  • Mourry, Ghita E.;Alami, Rachid;Elyadini, Adil;Hajjaji, Souad El;kabba, Saad El;Zouhdi, Mimoun
    • Safety and Health at Work
    • /
    • v.11 no.2
    • /
    • pp.193-198
    • /
    • 2020
  • Background: Medical laboratory workers are frequently exposed to a wide range of chemicals. This exposure can have adverse effects on their health. Furthermore, a knowledge lack of the chemical risk increases the likelihood of exposure. The chemical risk assessment reduces the risk of exposure to hazardous chemicals and therefore, guarantees health and safety of the workers. Method: The chemical risk assessment was conducted using a modified INRS method, according to the new CLP Regulation, of 11 unit laboratories in a Moroccan medical laboratory. Observation of each workstation and analysis of safety data sheets are key tools in this study. Results: A total of 144 substances and reagents that could affect the health of the analytical technicians were identified. Among these products, 17% are concerned by the low priority risk score, with 55% concerned by the average priority risk score and 28% concerned by the high priority risk score. This study also enabled to better identify the chemical agents that have restrictive occupational exposure limit value and controls were conducted to this effect. On the basis of the results obtained, several corrective and preventive measures have been proposed and implemented. Conclusion: Risk assessment is essential to ensure the health and safety of workers and to meet regulatory requirements. It enables to identify all the risky manipulations and to adopt appropriate preventive measures. However, it is not a one-time activity but it must be continuous in order to master the changes and thus ensure the best safety of all.

Towards the Application of Safety Integrity Level for Improving Process Safety (공정안전향상을 위한 Safety Integrity Level의 적용 방향)

  • Kwon, Hyuck-Myun;Park, Hee-Chul;Chun, Young-Woo;Park, Jin-Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.64-69
    • /
    • 2012
  • The concept of SIL is applied in the most of all standards relating to functional system safety. However there are problems for the people to apply SIL to their plants. as these standards don't include sufficient informations. In this regards, this paper will suggest the direction of SIL application and concept based on IEC 61508 and IEC 61511. A Safety Integrity Level(SIL) is the discrete level(one out of possible fours), corresponding to a range of the probability of an E/E/PE (Electric/Electrical/Programmable Electrical) safety-related system satisfactorily performing the specific safety functions under all the stated conditions within a stated period of time. SIL can be divided into the target SIL(or required SIL) and the result SIL. The target SIL is determined by the risk analysis at the analysis phase of safety lifecycle and the result SIL is calculated during SIL verification at the realization phase of safety lifecycle. The target SIL is determined by the risk analysis like LOPA(Layer Of Protection Analysis), Risk Graph, Risk Matrix and the result SIL is calculated by HFT(Hardware Fault Tolerance), SFF(Safe Failure Fraction) and PFDavg(average Probability of dangerous Failure on Demand). SIL is applied to various areas such as process safety, machinery(road vehicles, railway application, rotating equipment, etc), nuclear sector which functional safety is applied. The functional safety is the part of the overall safety relating to the EUC and the EUC control system that depends on the correct functioning of the E/E/PE safety-related systems and other risk reduction measures. SIL is applied only to the functional safety of SIS(Safety Instrumented System) in safety. EUC is the abbreviation of Equipment Under Control and is the equipment, machinery, apparatus or plant used for manufacturing, process, transportation, medical or other activities.

The Design of Total Safety System for Improving Productivity (생산성 향상을 위한 총체적 안전 시스템의 설계)

  • 김병석
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.59
    • /
    • pp.79-84
    • /
    • 2000
  • Korean industries have been tend to depending upon historical information to control risk. The other hand, foreign industries have been identify risk factors using system safety techniques to predict future risk. One agency or person could not solve the problems of total safety system for improving productivity. In order to solve those problems, the production-safety group is necessary, and safety control system must be adapted by fitting to the production flow. This paper is present the methodology of driving occupational safety programs to increase productivity.

  • PDF

A Study on the Development of Safety Standard through the Risk Assessment for Fuel Cell System Applied to UAV (무인 비행체용 연료전지 시스템 위험요소 분석을 통한 안전기준 개발 연구)

  • TAEHEON KIM;JAEUK CHOI;INROK CHO;JUNGWOON LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.1
    • /
    • pp.56-65
    • /
    • 2024
  • Fuel cell powered unmanned aerial vehicles (UAV) are globally being developed for various application according to hydrogen roadmap. However, safety standards for hydrogen fuel cell for UAV have not been established. Therefore, in this study, we derive safety data based on risk assessment to develop safety standards for fuel cells for UAV. We use fault tree analysis method which is broadly used in hydrogen facilities as a risk assessment tool. We set hydrogen leaks and fires as top events and derived the basic events. Safety data for the basic events were derived by quoting overseas safety standards related to fuel cells. The safety data will be used for developing fuel cell inspection standard according to Act on Hydrogen Economy Promotion and Hydrogen Safety Management.

Assessment of health risk associated with arsenic exposure from soil, groundwater, polished rice for setting target cleanup level nearby abandoned mines

  • Lee, Ji-Ho;Kim, Won-Il;Jeong, Eun-Jung;Yoo, Ji-Hyock;Kim, Ji-Young;Lee, Je-Bong;Im, Geon-Jae;Hong, Moo-Ki
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.38-47
    • /
    • 2011
  • This study focused on health risk assessment via multi-routes of As exposure to establish a target cleanup level (TCL) in abandoned mines. Soil, ground water, and rice samples were collected near ten abandoned mines in November 2009. The As contaminations measured in all samples were used for determining the probabilistic health risk by Monte-Carlo simulation techniques. The human exposure to As compound was attributed to ground water ingestion. Cancer risk probability (R) via ground water and rice intake exceeded the acceptable risk range of $10^{-6}{\sim}10^{-4}$ in all selected mines. In particular, the MB mine showed the higher R value than other mines. The non-carcinogenic effects, estimated by comparing the average As exposure with corresponding reference dose were determined by hazard quotient (HQ) values, which were less than 1.0 via ground water and rice intake in SD, NS, and MB mines. This implied that the non-carcinogenic toxic effects, due to this exposure pathway had a greater possibility to occur than those in other mines. Besides, hazard index (HI) values, representing overall toxic effects by summed the HQ values were also greater than 1.0 in SD, NS, JA, and IA mines. This revealed that non-carcinogenic toxic effects were generally occurred. The As contaminants in all selected mines exceeded the TCL values for target cancer risk ($10^{-6}$) through ground water ingestion and rice intake. However, the As level in soil was greater than TCL value for target cancer risk via inadvertent soil ingestion pathway, except for KK mine. In TCL values for target hazard quotient (THQ), the As contaminants in soil did not exceed such TCL value. On the contrary, the As levels in ground water and polished rice in SD, NS, IA, and MB mines were also beyond the TCL values via ground water and rice intake. This study concluded that the health risks through ground water and rice intake were greater than those though soil inadvertent ingestion and dermal contact. In addition, it suggests that the abandoned mines to exceed the risk-based TCL values are carefully necessary to monitor for soil remediation.

A study on the risk assessment of the workplaces in the General Sawmill Industry (일반제재업의 작업장소별 위험성 평가)

  • Rhee, Hongsuk;Shin, Woonchul
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.4
    • /
    • pp.105-112
    • /
    • 2015
  • Sawmilling industry remained a high risk with the average 4.73% of industrial accidents in 2010-2012 that was eight times that of general manufacturing. Sawmilling industry had 200 industrial accidents victim in average. Manufacturing process in sawmill industry contained dangerous machinery such as conveyors, roller, saw ( band saw, circular saw) etc. It may be effective to figure out the type of industrial accidents occurred in the past and extend risk assessment which can predict hazard such as near miss when implementing exposure or potential dangers in sawmill industry. This study conducted research on the actual condition on the place of industrial accident occurrence, detailed work and contact object when injured, and injured part targeting 643 businesses which had industrial accidents in 2010-2012. As the results, RPN of general sawmill industry was the highest 'ganglip saw' with 36,157. RPN of the following order were 'moving truck' with 25,454, 'special machining operations' with 22,283. Also, probability of general sawmill industry was a lots within 1 year, while risk appeared a lots within 5 years. So, risk assessment shall be needed to emphasis on accident prevention of sawmill industry. And additional work will be needed on the risk assessment in hazard prevention work of supervisors.

Safety Estimation Index of Infectious Disease (COVID-19) in Workplaces (사업장에 적용 가능한 감염병(COVID-19) 위험성평가 지표 개발)

  • Kim, Ha Kyeong;Lee, Myoung Ha;Song, Hyung-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.2
    • /
    • pp.88-96
    • /
    • 2022
  • Widespread infectious diseases are a concern for workers working in confined spaces. However, there is no risk assessment index for the risk of infectious disease in the workplace. Therefore, we propose a simple but effective index model to assess the risk of infectious diseases in the workplace. The proposed model identifies the risk of each workplace through an evaluation sheet comprising the frequency and intensity of the infectious disease. The intensity of an infectious disease is generally governed by the density of workers, whereas frequency is the sum of physical-e nvironmental and human management factors. By multiplying intensity and frequency, the risk of the workplace is derived. Through the proposed model, we evaluate the risks of workers at 15 different work sites. The proposed model clearly reveals what should be improved to keep workers safe from infectious diseases and will be helpful in assessing the risk of contagious disease at the work place.

Association between Urinary Bisphenol A and Waist Circumference in Korean Adults

  • Ko, Ahra;Hwang, Myung-Sil;Park, Jae-Hong;Kang, Hui-Seung;Lee, Hee-Seok;Hong, Jin-Hwan
    • Toxicological Research
    • /
    • v.30 no.1
    • /
    • pp.39-44
    • /
    • 2014
  • Bisphenol A (BPA) is widely used in the production of polycarbonate plastics, epoxy resins, and food and beverage containers. In the present study, we aimed to investigate the relationship between urinary concentrations of BPA and waist circumference in Korean adults. A total of 1,030 Korean adults (mean age, $44.3{\pm}14.6$ years) were enrolled in the study on the integrated exposure to hazardous materials for safety control, conducted by the Ministry of Food and Drug Safety from 2010 to 2012. Abdominal obesity was defined as having a waist circumference of at least 90 cm and 85 cm for men and women, respectively. The participants were divided into 4 groups according to the urinary BPA concentration quartile. Waist circumference was significantly higher among subjects with a urinary BPA concentration in the highest quartile relative to those in the lowest quartile (p = 0.0071). Linear regression analysis revealed a significant positive association between urinary BPA concentrations and body mass index, body fat, after adjusting for potential confounders. Moreover, subjects with urinary BPA concentrations in the fourth quartile were more likely to be obese compared to those with urinary BPA concentrations in the first quartile (odds ratio, 1.938; 95% CI: 1.314~2.857; p for trend = 0.0106). These findings provide evidence for a positive association between urinary BPA concentration and waist circumference in Korean adults.