• Title/Summary/Keyword: Safety requirements

Search Result 1,715, Processing Time 0.028 seconds

A Study on the Damage Design of Military Aircraft Structure Material by Armor Piercing Bullet Hit (철갑탄 피격에 의한 군용 항공기 구조재료의 손상설계에 관한 연구)

  • Hur, Jang-Wook;Hyun, Young-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1051-1057
    • /
    • 2010
  • Database for the damage reference by armor piercing bullet test was established for both tube and plate specimens having a range of thickness. As the inclined angles of hit are increasing, it has been found that penetration damage diameter tends to increases accordingly in both specimen of the tube and plate, and such penetration damage diameter on the rear side becomes bigger than those on the front side. The tube specimen showed that the damage becomes bigger when central areas rather than the peripheral were hit. Through the plate test, it also has been found that the penetration ballistic limit for Al alloy is about 25.4mm and that of stainless steel about 12.7mm. From the fatigue analysis results using the database for damage reference, it has been identified whether the safety requirements of military aircraft could be met.

Basic study of reuse planning automation algorithms on system forms that are used on girders and beams (보용 시스템 거푸집의 전용계획 자동화 알고리즘 기초연구)

  • Lim, Chaeyeon;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.7-8
    • /
    • 2015
  • Formwork accounts for 10% of the total construction cost and 30~40% of the framework cost, which is a fairly large part. Various system forms were developed for improved economic feasibility and constructability of formwork and for reduced construction duration. In general, the price of system forms per unit area is higher than that of the conventional method, yet the total construction cost can be reduced through higher reusability and constructability. However, if the reusability of forms is excessively increased to cut down the material cost, it may increase the construction duration, which will result in cost increase. On the other hand, if the reusability is decreased for reduction of construction duration, it may lead to cost increase caused by excessive input of materials. To solve such a problem, an algorithm for simplified reuse planning that meets the requirements of construction duration, cost, quality and safety is required. In this regard, the study intends to perform a fundamental research for development of reuse planning automation algorithms on system forms that are used on girders and beams.

  • PDF

Structural Design of a 750kW Composite Wind Turbine Blade (750kW급 풍력발전기용 복합재 블레이드의 구조설계)

  • Jung C.K.;Park S.H.;Han K.S.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.18-21
    • /
    • 2004
  • A GFRP based composite blade was developed for a 750kW wind energy conversion system of type class I. The blade sectional geometry was designed to have a general shell-spar structure. The load cases specified in the IEC61400-1 international specification were considered. For withstanding all relevant extreme loads, the structural analysis for the complete blade was performed using a commercial FEM code. The static load carrying capacity, buckling stability, blade tip deflection and natural frequencies at various rotational speeds were evaluated to satisfy the strength requirements in accordance with the IEC61400-1 and GL Regulations. For designing a lightweight blade, the thickness and the lay-up pattern of the skin-foam sandwich structures were optimized iteratively using the DOT program T-bolts were used for joining the blade root and the hub, which were modeled using a 3D FE volume model. In order to confirm the safety of the root connection, the static stresses of the thick root laminate and the steel. bolts were predicted by taking account of the bolt pretension and the root bending moments. The calculated stresses were compared with the material strengths.

  • PDF

Probabilistic Model of Service Life to Evaluate Damage Tolerance of Composite Structure (복합재 항공구조물의 손상허용평가를 위한 운항수명의 확률적 모델)

  • A.스튜어트;A.우샤코프;심재열;황인희
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.245-248
    • /
    • 2000
  • Modern aircraft composite structures are designed using a damage tolerance philosophy. This design philosophy envisions sufficient strength and structural integrity of the aircraft to sustain major damage and to avoid catastrophic failure. The only reasonable way to treat on the same basis all the conditions and uncertainties participating in the design of damage tolerant composite aircraft structures is to use the probability-based approach. Therefore, the model has been developed to assess the probability of structural failure (POSF) and associated risk taking into account the random mechanical loads, random temperature-humidity conditions, conditions causing damages, as well as structural strength variations due to intrinsic strength scatter, manufacturing defects, operational damages, temperature-humidity conditions. The model enables engineers to establish the relationship between static/residual strength safety margins, production quality control requirements, in-service inspection resolution and criteria, and POSF. This make possible to estimate the cost associated with the mentioned factors and to use this cost as overall criterion. The methodology has been programmed into software.

  • PDF

Research on rotation capacity of the new precast concrete assemble beam-column joints

  • Han, Chun;Li, Qingning;Wang, Xin;Jiang, Weishan;Li, Wei
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.613-625
    • /
    • 2016
  • The joints of the new prefabricated concrete assemble beam-column joints are put together by the hybrid joints of inserting steel under post-tensioned and non-prestressed force and both beams and columns adopt prefabricated components. The low cyclic loading test has been performed on seven test specimens of beam-column joints. Based on the experimental result, the rotation capacity of the joints is studied and the $M-{\theta}$ relation curve is obtained. According to Eurocode 3: Design of steel structures and based on the initial rotational stiffness, the joints are divided into three types; by equivalent bending-resistant stiffness to the precast beam, the equivalent modulus of elasticity $E_e$ is elicited with the superposition method; the beam length is figured out that satisfies the rigid joints and after meeting the requirements of application and safety, the new prefabricated concrete assemble beam-column joints can be regarded as the rigid joints; the design formula adopted by the standard of concrete joint classification is theoretically derived, thereby providing a theoretical basis for the new prefabricated concrete structure.

Development of Vehicle Evaluation System for Pedestrian Protection (보행자 보호를 위한 차량평가시스템 개발)

  • Yong, Boo-Joong;Cho, Hyun-Deog;Lee, Jae-Wan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.4
    • /
    • pp.53-58
    • /
    • 2006
  • IHRA Pedestrian Working Group has investigated and analyzed the current status of pedestrian-vehicle accidents in IHRA member countries. According to the results, European countries and Japan are working on new regulations to improve passive pedestrian protection on passenger cars significantly. Although IHRA proposed pedestrian test procedures, which may provide a basis of technical regulations in the future, further research and development are necessary to refine the procedures. In order to prepare and satisfy the pedestrian protection requirements, domestic passenger vehicles also should be tested. Among various safety-related studies based on accident data analysis, dealing with pedestrian head injury would be considered one of the keen interests. In this study, the pedestrian headform impact test system is developed. The developed system will be useful to carry out validation study of the test procedures through actual tests using sample vehicles, and to explore the car feasibility level prior to the use of the test methods in legislation.

  • PDF

Design of Urban Transport Management System Based on Integrated Wireless LAN Technologies (통합 무선 기술 기반의 도시 교통 관리 시스템 설계)

  • Woo, Seok;Kim, Eun-Chan;Oh, Kyoung-Seok;Kim, Ki-Seon
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.99-100
    • /
    • 2007
  • Rapid developments of industry and economics have made a metropolis which demands an effective urban transport management system (UTMS). Specially, this paper considers a subway surveillance system based on integrated wireless LAN technologies for public safety. Since a current subway platform security entirely relies on conventional closed circuit television camera (CCTV) or human operators, subway train drivers cannot detect platform states and cope with abnormal situations or accidents immediately. However, through the IP cameras and some wireless routers, high qualify images of the platform conditions can be directly delivered to the train drivers and other station employees in advance of train entering the platform. In this paper, several design issues and problems are discussed when building up the subway management system. Further, we illustrate a system model with the system requirements in real parametric values in order to draw concrete system designs and to realize a practical implementation of the future UTMS.

  • PDF

A Non-volatile Memory Lifetime Extension Scheme Based on the AUTOSAR Platform using Complex Device Driver (AUTOSAR 플랫폼 기반 CDD를 활용한 비휘발성 메모리 수명 연장 기법)

  • Shin, Ju-Seok;Son, Jeong-Ho;Lee, Eun-Ryung;Oh, Se-Jin;Ahn, Kwang-Seon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.5
    • /
    • pp.235-242
    • /
    • 2013
  • Recently, the number of automotive electrical and electronic system has been increased because the requirements for the convenience and safety of the drivers and passengers are raised. In most cases, the data for controlling the various sensors and automotive electrical and electronic system used in runtime should be stored on the internal or external non-volatile memory of the ECU(Electronic Control Units). However, the non-volatile memory has a constraint with write limitation due to the hardware characteristics. The limitation causes fatal accidents or unexpected results if the non-volatile memory is not managed. In this paper, we propose a management scheme for using non-volatile memory to prolong the writing times based on AUTOSAR(AUTOmotive Open System Architecture) platform. Our proposal is implemented on the CDD(Complex Device Driver) and uses an algorithm which swaps a frequently modified block for a least modified block. Through the development of the prototype, the proposed scheme extends the lifetime of non-volatile memory about 1.08 to 2.48 times than simply using the AUTOSAR standard.

Prospect on IMO's Performance Standards for Protective Coatings (PSPC) Regulation for Ship's Water Ballast Tanks

  • Baek, Kwang Ki
    • Corrosion Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.219-223
    • /
    • 2008
  • In 2006, as a means to minimize early corrosion failure of ships, thus to enhance marine safety, International Maritime Organization (IMO), proposed a mandatory regulation for Performance Standards for the Protective Coatings (PSPC) for ballast tanks of newly built ships to satisfy 15 years of target useful life. In this regulation, several unprecedented strict rules are adopted as minimum, mandatory requirements for protective coatings of ship's water ballast tanks, and all type of ships sailing international sea are subjected to this regulation which is to be effective as early as June of 2008. The PSPC addresses many technical issues in the areas of surface pretreatment (primary and secondary), coating materials, coating application procedure and inspection as well as necessary documentation. The PSPC rules are new and unproven concepts, which calls for rigorous incorporation of reality-based evidences currently available, since there are no practical experiences in terms of the validity of the PSPC rules. There has been much controversy surrounding these regulations and considerable effort has been made by both shipyards and ship owners alike to achieve a performance standard for ballast tank coatings, which is acceptable to all. In this paper, the background and overview of the PSPC rules are given, and several issues in the PSPC are reviewed as a base to achieve robustness of the proposed PSPC, which will serve as a means to minimize early corrosion and to ensure 15 year target useful life of ships.

Technology Trend of Propellant Tank Vent Relief Valve for Launch Vehicle (발사체용 추진제 탱크 벤트릴리프 밸브 기술 동향)

  • Koh, Hyeon-Seok
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.9 no.1
    • /
    • pp.130-138
    • /
    • 2011
  • A vent relief valve performs as a safety valve, which ensures ventilation of propellant tank during filling and protection from tank overpressure after filling. Because of the reliability and cost saving, the virtually same vent relief valve has been used on all US cryogenic liquid fueled launch vehicles. Some modification to the valve has been applied to satisfy the various mission requirements of launch vehicles. This paper reviews the main technology trends of the vent relief valve applied to the propellant feed system for launch vehicle with respect to design and manufacture. This paper also introduces the operating technology of vent relief valve applied for launch vehicles of advanced countries in space development.

  • PDF