• Title/Summary/Keyword: Safety pressure

Search Result 2,959, Processing Time 0.029 seconds

Diffusion Range and Pool Formation in the Leakage of Liquid Hydrogen Storage Tank Using CFD Tools

  • Kim, Soohyeon;Lee, Minkyung;Kim, Junghwan;Lee, Jaehun
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.653-660
    • /
    • 2022
  • In liquid hydrogen storage tanks, tank damage or leakage in the surrounding pipes possess a major risk. Since these tanks store huge amounts of the fluid among all the liquid hydrogen process facilities, there is a high risk of leakage-related accidents. Therefore, in this study, we conducted a risk assessment of liquid hydrogen leakage for a grid-type liquid hydrogen storage tank (lattice-type pressure vessel (LPV): 18 m3) that overcame the low space efficiency of the existing pressure vessel shape. Through a commercially developed three-dimensional computational fluid dynamics program, the geometry of the site, where the liquid hydrogen storage tank will be installed, was obtained and simulations of the leakage scenarios for each situation were performed. From the computational flow analysis results, the pool formation behavior in the event of liquid hydrogen leakage was identified, and the resulting damage range was predicted.

Seat Pressure Distribution Characteristics During 1 Hour Sitting in Office Workers With and Without Chronic Low Back Pain

  • Akkarakittichoke, Nipaporn;Janwantanakul, Prawit
    • Safety and Health at Work
    • /
    • v.8 no.2
    • /
    • pp.212-219
    • /
    • 2017
  • Background: Low back pain (LBP) is a major problem for office workers. Individuals adopting poor postures during prolonged sitting have a considerably increased risk of experiencing LBP. This study aimed to investigate seat pressure distribution characteristics, i.e., average pressure, peak pressure ratio, frequency of postural shift, and body perceived discomfort (BPD), during 1 hour of sitting among office workers with and without chronic LBP. Methods: Forty-six participants (chronic LBP = 23, control = 23) typed a standardized text passage at a computer work station for an hour. A seat pressure mat device was used to collect the seat pressure distribution data. Body discomfort was assessed using the Body Perceived Discomfort scale. Results: Office workers with chronic LBP sat significantly more asymmetrically than their healthy counterparts. During 1-hour sitting, all workers appeared to assume slumped sitting postures after 20 minutes of sitting. Healthy workers had significantly more frequent postural shifts than chronic LBP workers during prolonged sitting. Conclusion: Different sitting characteristics between healthy and chronic LBP participants during 1 hour of sitting were found, including symmetry of sitting posture and frequency of postural shift. Further research should examine the roles of these sitting characteristics on the development of LBP.

The Evaluation of Fire Reliability for the High Pressure Hydrogen Storage System of Fuel Cell Vehicle (I) (연료전지자동차의 고압수소저장시스템 국부화재 신뢰성 평가 (I))

  • Kim, Sang-Hyun;Choi, Young-Min;Hang, Ki-Ho;Shim, Ji-Hyun;Hang, In-Cheol;Lim, Tae-Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.520-526
    • /
    • 2011
  • In recent years, it is very important that hydrogen storage system is safe for user in any circumstances in case of crash and fire. Because the hydrogen vehicle usually carry high pressurized cylinders, it is necessary to do safety design for fire. The Global Technical Regulation (GTR) has been enacted for localized and engulfing fire test. High pressure hydrogen storage system of fuel cell electrical vehicles are equipped with Thermal Pressure Relief Device (TPRD) installed in pressured tank cylinder to prevent the explosion of the tank during a fire. TPRDs are safety devices that perceive a fire and release gas in the pressure tank cylinder before it is exploded. In this paper, we observed the localized and engulfing behavior of tank safety, regarding the difference of size and types of the tanks in accordance with GTR.

A Safety Study on the Stress Characteristics of a Composite Pressure Cylinder for a Use of 70MPa Hydrogen Gas Vehicle (70MPa 수소가스차량용 복합소재 압력용기의 응력특성에 관한 안전성 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • This paper presents a stress safety of a composite pressure cylinder for a hydrogen gas vehicle. The composite pressure cylinder in which is composed of an aluminum liner and carbon fiber wound layers contains 104 liter hydrogen gas, and is compressed by a filling pressure of 70 MPa. The FEM computed results are analyzed based on the US DOT-CFFC basic requirement for a hydrogen gas cylinder and KS B ISO specification. The FEM results indicate that the stress, 255.2 MPa of an aluminum liner is sufficiently low compared with that of 272 MPa, which is 95% level of a yield stress for aluminum. Also, the composite layers in which are wound on the surface of an aluminum cylinder are safe because the stress ratios from 3.46 to 3.57 in hoop and helical directions are above 2.4 for a minimum safety level. The proposed composite pressure cylinder wound by carbon fibers is useful for 70 MPa hydrogen gas vehicles.

Time Pressure, Time Autonomy, and Sickness Absenteeism in Hospital Employees: A Longitudinal Study on Organizational Absenteeism Records

  • Kottwitz, Maria U.;Schade, Volker;Burger, Christian;Radlinger, Lorenz;Elfering, Achim
    • Safety and Health at Work
    • /
    • v.9 no.1
    • /
    • pp.109-114
    • /
    • 2018
  • Background: Although work absenteeism is in the focus of occupational health, longitudinal studies on organizational absenteeism records in hospital work are lacking. This longitudinal study tests time pressure and lack of time autonomy to be related to higher sickness absenteeism. Methods: Data was collected for 180 employees (45% nurses) of a Swiss hospital at baseline and at follow-up after 1 year. Absent times (hours per month) were received from the human resources department of the hospital. One-year follow-up of organizational absenteeism records were regressed on self-reported job satisfaction, time pressure, and time autonomy (i.e., control) at baseline. Results: A multivariate regression showed significant prediction of absenteeism by time pressure at baseline and time autonomy, indicating that a stress process is involved in some sickness absenteeism behavior. Job satisfaction and the interaction of time pressure and time autonomy did not predict sickness absenteeism. Conclusion: Results confirmed time pressure and time autonomy as limiting factors in healthcare and a key target in work redesign.

A Study on the Establishment of Facility Guidelines for Infectious Diseases Hospitals - Focusing on Operational Methods and Architectural Planning (감염병전문병원의 시설 가이드라인에 관한 연구 - 운영방식과 건축계획을 중심으로)

  • Choi, Kwangseok
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.28 no.2
    • /
    • pp.17-29
    • /
    • 2022
  • Purpose: In terms of efficiency and safety, this study attempted to organize data on the operation methods and architectural planning of infectious diseases hospitals. Methods: The results obtained through on-site and interview surveys with hospital officials and medical staffs at four infectious diseases hospitals under construction were summarized based on those original business plans and facility guidelines. Results: First, the operational methods to secure safety and operational efficiency were summarized for each department which are major hospital functions of infectious disease hospitals. Second, as the architectural planning, the characteristics of space and circulation of each department are summarized. For safety of medical staff, negative pressure and non-negative pressure zone have to completely separated. In addition medical staff wears PPE and enters the negative pressure zone and returns in the order of admiral, shower, and gowning in the PPE undressing room after patient treatment. In case of operational efficiency, flexible operation is required in normal and crisis situations. For example, it is important for The Ward to gradually switch to negative pressure beds in times of crisis from normal situation and the outpatient department considers the composition of negative pressure and non-negative pressure outpatient spaces that can operate in parallel even in crisis situations. Implications: Infectious disease hospitals require flexible operation and appropriate facilities for normal and crisis situations.

Dynamic Stability Assessment of Pressure Hull in Deep Sea against Implosion Pressure Pulse (심해 환경 하에서 내파 충격파를 받는 내압 선체의 동적 좌굴 평가 기법)

  • Nho, In Sik;Cho, Sang Rai;Cho, Yoon Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.4
    • /
    • pp.198-206
    • /
    • 2020
  • In this study, the dynamic structural behavior of pressure vessels due to pressure pulse initiated by implosion of neighbouring airbacked equipments including Unmanned Underwater Vehicles (UUV), sensor system, and so on were dealt with for the structural design and safety assessment of pressure hulls of submarine. The dynamic buckling and collapse responses of pressure vessel in deep sea were investigated considering the effects of initial hydrostatic pressure and fluid-structure interactions. The governing equations for circular cylindrical shells were formulated theoretically assuming a relatively simple displacement fields and the derived nonlinear simultaneous ordinary differential equations were analysed by developed numerical solution algorithm. Finally, the introduced safety assessment procedures for the dynamic buckling behaviors of pressure hulls due to implosion pressure pulse were validated by comparing the theoretical analysis results with those of experiments for examples of simple cylinders.

A Study on Physicochemical Characteristics of Hydrogen Gas Explosion (수소가스 폭발의 물리화학적 특성 연구)

  • Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.1
    • /
    • pp.8-14
    • /
    • 2012
  • Hydrogen is considered to be the most important future energy carrier in many applications reducing significantly greenhouse gas emissions, but the explosion safety issues associated with hydrogen applications need to be investigated and fully understood to be applicable as the carrier. The risk associated with a explosion depends on an understanding of the impacts of the explosion, particularly the pressure-time history during the explosion. This work provides the effects of explosion parameters, such as specific heat ratio of burned and unburned gas, equilibrium maximum explosion pressure, and burning velocity, on the pressure-time history with flame growth model. The pressure-time history is dominantly depending on the burning velocity and equilibrium maximum explosion pressure of hydrogen-air mixture. The pressure rise rate increase with the burning velocity and equilibrium maximum explosion pressure. The specific heat ratio of unburned gas has more effect on the final explosion pressure increase rate than initial explosion pressure increase rate. However, the specific heat ratio of burned gas has more influence on initial explosion pressure increase rate. The flame speeds are obtained by fitting the experimental data sets. The flame speeds for hydrogen in air based on our experimental data is very low, making a transition from deflagration to detonation in a confined space unlikely under these conditions.

Investigation of Laws and Standards related to Safety Criteria for Commercial Kitchen Machines (주방 기기 안전 기준 관련 법령 및 규격 조사)

  • Kee, Do-hyung;Song, Young-Woong;Kim, Young-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.2
    • /
    • pp.81-93
    • /
    • 2017
  • This study aims to investigate laws and standards(including technical guidelines) related to safety criteria for 22 kitchen machines frequently used in commercial kitchens. The study was based on literature survey, interviews with charge persons in kitchen machines manufacturing companies, cafeteria providing group meals and relevant association, and web surfing. The results showed that there are two types of safety criteria such as legally forced ones by laws and optional ones by national industrial standards or technical guidelines. High pressure safety control act, safety control and business of liquefied petroleum gas act and city gas business act prescribed gas use apparatus safety criteria, rational energy utilization act did those of pressure vessel such large rotary caldron, industrial health and safety act did those of food processing machinery, and electrical appliances safety control act did those of electrical kitchen appliances. Compulsory or optional standards or guidelines related to safety criteria for kitchen machines were presented by 22 kitchen machines. Safety devices shown in the laws, standards and guidelines were also summarized by kitchen machines and their risk factors.

A Numerical Study to Analyze Safety of Pressure Leakage Monitoring System of Gas Extinguishing Agent (가스소화약제 압력누기감시장치의 안전성 분석을 위한 수치적 연구)

  • Go, A-Ra;Lim, Dong-Oh;Son, Bong-Sei
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.103-110
    • /
    • 2016
  • While the demand for the gas system fire extinguishers increases every year, there are insufficient safety measures for assessing the extinguishing performance, such as system safety and reliability in the preparation of increasing demand, which has emerged as a social problem. One of the most critical causes of accidents occurring with the gas extinguishing system is pressure leakage from the extinguishing agent storage container. This is considered to be one of the critical factors on which the success of fire suppression depends. In this study, its safety measure was studied, Because it was deemed urgently necessary. The newly developed pressure leakage monitoring system is a system monitoring storage condition, pressure, leakage and discharge of the storage container related to agent concentration, which is one of the critical factors for fire suppression. This was developed to be applicable to the $CO_2$ and HFC-23 systems. Therefore, for structural safety analysis, the safety performance was verified by the fluid structure coupling analysis of the safety problems that may occur when the pressure leakage monitoring system is applied to the gas fire extinguisher. For analysis programs, the FloEFD program from Mentor Graphics was used for computational fluid dynamics analysis and ABAQUS from Dassault Systems was used for structural analysis. From the result of numerical analysis, the structure of $CO_2$ did not develop plastic deformation and its safety was verified. However, plastic deformation and deviation issue occurred with the HFC-23 monitoring system and therefore verified the structural safety of pressure leakage monitoring system by data obtained from redesigning and adjusting the condition of numerical interpretation three times.