• Title/Summary/Keyword: Safety operational envelope(SOE)

Search Result 3, Processing Time 0.014 seconds

A Study on the Safety Operational Envelope of a Submarine in Jamming (잠수함의 제어판 재밍에 대한 안전운항영역 설정)

  • Park, Jong-Yong;Kim, Nakwan;Shin, Yong-Ku
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.4
    • /
    • pp.301-311
    • /
    • 2017
  • Safety operational envelope (SOE) is the area which guarantees the safety of a submarine from the accident such as jamming and flooding. The maximum safe depth is set to prevent the damage to the hull from increasing water pressure with depth. A minimum safety depth is set to prevent a submarine from the exposure above the free surface and collision against surface ship. The prediction method for the SOE in the design phase is needed to operate the submarine safely. In this paper, the modeling and calculation methods of the SOE are introduced. Main ballast tank blowing modeling and propeller force modeling are conducted to simulate the accidents and the recovery process. The SOEs are established based on the crash stop and emergency rising maneuver simulation. From the simulation results, it can be known that the emergency rising maneuver is more effective recovery action than the crash stop.

A Study on the Methodology for Assessment of Safe Operating Envelope on Light Aircraft Carrier Using CFD Modeling Database of Flight Deck Air-wake (함재기 안전임무수행범주 평가를 위한 함정갑판 공기유동의 CFD 모델링 DB 활용연구)

  • Jae Hwan Jung;Dong-Min Park;Seok-Kyu Cho;Sa Young Hong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.5
    • /
    • pp.312-323
    • /
    • 2024
  • This study aims to evaluate the safe operating envelope (SOE) for light aircraft carriers using a computational fluid dynamics (CFD) modeling database of flight deck air-wake. Assessing the SOE is crucial for ensuring the safe operation of carrier-based aircraft, particularly during take-off and landing maneuvers. Traditional methods that only consider relative wind envelopes (RWE) provide basic information but fail to account for the complex airflow patterns over the flight deck. To address this limitation, this research utilizes CFD to analyze the air-wake and integrate these findings into the SOE assessment. Various studies on CFD modeling of airflow around naval ships and aircraft carriers were reviewed, confirming the importance of accurate airflow databases for operational safety. This study employs the KRISO-CVX1 model, a light aircraft carrier designed by the Korea Research Institute of Ships & Ocean Engineering (KRISO), to demonstrate the application of CFD data in SOE evaluations. The methodology involves a detailed analysis of turbulent flow and thermal fields around the carrier deck under different wind speed, direction, and ship speed conditions. The results indicate significant variations in air-wake characteristics depending on the relative wind speed and direction, impacting the operational safety of carrier-based aircraft. This study emphasizes the need for incorporating CFD-based airflow data into SOE assessments to enhance the accuracy and reliability of operational safety evaluations for aircraft carriers. In conclusion, the integration of CFD air-wake modeling databases provides a more comprehensive approach to assessing the SOE, offering improved safety margins for carrier-based aircraft operations. This research is expected to contribute to the development of more robust and precise operational guidelines for naval aviation.

A Study on the Modeling of Hydrodynamic Coefficient for the Emergency Maneuver Simulation of Underwater Vehicle (수중함의 긴급기동 해석을 위한 유체력계수 모델링에 관한 연구)

  • Shin, Yong-Ku;Lee, Seung-Keon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.601-607
    • /
    • 2005
  • This paper describes a hydrodynamic modelling study based on the Feldman's equation to predict the nonlinear and coupled maneuvering characteristics of high speed submarine. The hydrodynamic coefficients set is obtained from the modeling of the cross flow drag force and sail induced vorticity, and the captive model experiments(VPMM and RA test) results used to improved the accuracy. The results contained in this paper will be helpful to predict the behavior of tight turn maneuver and to improve the SOE(Safety Operational Envelope) analysis in case of emergency maneuver.