• Title/Summary/Keyword: Safety of ships

Search Result 1,197, Processing Time 0.028 seconds

Effect of Virtual Reality Training for the Enclosed Space Entry (밀폐공간진입을 위한 가상현실(VR) 훈련의 효과)

  • Chae, Chong-Ju;Lee, Jin-Woo;Jung, Jin-Ki;Ahn, Young-Joong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.232-237
    • /
    • 2018
  • According to the MAIIF report, from 1998 to 2009, 101 incidents involving entering enclosed spaces aboard ships resulted in 93 deaths and 96 casualties. IMO has therefore amended the Recommendations for entering Enclosed Spaces Entry and SOLAS 1974 Convention Chapter 3 Regulation 19, which mandates enclosed spaces entry and rescue drill on a regular basis. The training of entering such enclosed spaces should be practical, recognizing all possible risks of entering enclosed spaces aboard ships, while also considering the safety of trainees during the training. Recently, educational contents utilizing virtual reality (VR) have been applied in various fields to improve education and training effects, and these methods have proven to have advantages in actual and repetitive learning without being limited to physical space. In this study, the effectiveness, characteristics and differentiation of training of entering enclosed spaces aboard ships using VR were compared with traditional class room lectures through quantitative evaluation and questionnaires of training participants. Through the evaluation and questionnaire, it was found that participants using VR understood and learned the required training elements better than the control group, all of whom were trained through the normal class room lecture. Moreover, participants reported to display preference for training with the help of VR. As a result of the study, it was confirmed that the learning effects of VR onboard training can be used as an effective training method, especially by using video and other types of simulators.

A Study on the Thermal Flow of Waste Heat Recovery Unit (WHRU) for Ship's Organic Rankine Cycle Power Generation System using CFD Method (CFD를 활용한 선박고온도차발전용 WHRU의 열유동 해석에 관한 연구)

  • Whang, Dae-jung;Park, Sang-kyun;Jee, Jae-hoon;Bang, Eun-shin;Oh, Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.647-655
    • /
    • 2021
  • The IMO (International Maritime Organization) is discussing the improvement of energy ef iciency of ships in order to reduce greenhouse gas emissions from ships. Currently, by applying an ORC power generation system using waste heat generated from ships, high energy conversion efficiency can be expected from ships. This technology uses an organic medium based on Freon or hydrocarbons as the working fluid, which evaporates at a lower temperature range than water. Through this, it is possible to generate steam (gas) and generate power at a low and low temperature relatively. In this study, the analysis of heat flow between the refrigerant and waste heat in the ORC power generation system, which is an organic Rankine cycle, is analyzed using 3D simulation techniques to determine the temperature change, velocity change, pressure change, and mass change of the fluid flowing of the WHRU (Waste Heat Recovery Unit) inside and the outside the structure. The purpose of this study is to analyze how the mass change affects the structure, and this study analyzed the heat transfer of the heat exchanger from the refrigerant and the exhaust gas of the ship's main engine in the ORC power generation system using this technique.

A Study on the Improvement Measures for the Safe Maneuvering of Passenger Ships in Port Area through Analysis of Marine Accidents (여객선 해양사고 분석을 통한 안전한 항내조선 개선방안에 관한연구)

  • Chong, Dae-Yul
    • Journal of Navigation and Port Research
    • /
    • v.46 no.1
    • /
    • pp.18-25
    • /
    • 2022
  • MOF strengthen the law and institutions for safety management after the capsize accident of passenger ship "Sewol" on April 16, 2014. Nevertheless, about 13 cases of marine accidents such as collisions, contact, and stranding have occurred in coastal passenger ships over the past 5 years. Particularly, according to the judgment of KMST, most of the main causes of passenger ship accidents occurred within harbor areas because of the master's improper ship-handling or inattention. And so, this study analyzed four cases of marine accidents on passenger ships that occurred in the port areas and examined the environmental, institutional, material, and human factors that contributed to the master's improper ship-handling and behavior, and the results are as follows. First, as an environmental factor, the size of the turning basin was not enough. Second, as an institutional factor, the VTS control was not properly supported, the master lacked sufficient training for safe ship-handling in the port area and up-to-date charts were not provided. Third, as a material factor, the digital type speed log capable of the ship's speed in real-time was not installed on the ship's wing bridge. Lastly, as a human factor, the master could not take proper bridge resources and the passage plan was not proper. Therefore, it is suggested in this paper that the size of the turning basin should be adjusted to meet the prescribed standards, the master of passenger ships should receive the ship-handling simulation training among other safety training to ensure safe ship-handling of the master in the port area as improvement measures.

A Study on Installation of Maritime Passenger Service Environment for the Disabled Persons (장애인을 위한 해상교통환경 구축 방안에 관한 연구)

  • Kim, Sungkuk;Han, Won-Heui;Yang, Hyungseon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.4
    • /
    • pp.389-397
    • /
    • 2018
  • Modern countries have almost ratified the UN Convention on the rights of persons with disabilities and are creating environments to prevent discrimination against these individuals. In 1996, the International Maritime Organization presented a recommendation for the design and operation of passenger ships to respond to elderly and disabled persons' needs. In Korea, an act on the promotion of transportation convenience for mobility disadvantaged persons has been implemented, and facilities for the disabled have been rapidly installed in ships, vehicles, aircraft, railways and passenger terminals. However, the maritime transport environment is less concerned about disabled persons than safety. In this study, basic research was conducted to improve the maritime transport environment for disabled people in Korea through a field survey and literature survey. As a result, it was found that relevant laws and regulations have not been properly applied to excursion ships and ferries as well as small-scale ports, which are responsible for a large part of coastal passenger transportation. In addition to low installation rates of facilities for the transportation of persons with disabilities in ships and terminals, loose equipment was also considered. Therefore, it is necessary to protect the human rights of persons with disabilities, which are universal values of humanity, by complementing laws and introducing improved facilities.

An Experimental Study on the Development of a Cabin Noise Reduction System for Improving Ship Habitability (선박 거주성 향상을 위한 선실 소음 저감 시스템 개발에 관한 실험적 연구)

  • Young-Choul Seo;Deug-Bong Kim;Chol-Seong Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.620-627
    • /
    • 2023
  • Ship noise is one of the important factors for the living and health of seafarers, and ef orts to reduce ship noise are actively underway. There are two methods of noise reduction: passive noise Control (PNC) and active noise control (ANC). Unlike cars and airplanes, ANC is not widely used for noise reduction on ships. This study aimed to reduce the noise generated in the engine room by using soundproof panels and high-frequency vibration generators, as well as active noise control (ANC). For this purpose, an experimental model was made using an acrylic box, and the noise reduction effect was measured under four conditions. The experimental results are as follows: First, the soundproof panel had a noise reduction effect in all ranges from 55 dB to 85 dB. In the case of using a high-frequency vibration generator, there was no ef ect in the low noise range such as 55 dB(A), but there was a noise reduction effect in the high noise range such as 70.8 dB(A) and 85 dB(A).Second, when the soundproof panel and the high-frequency vibration generator were used simultaneously, the noise reduction ef ect was up to -2.2 dB(A). The results of this experiment were obtained from an experimental model made of acrylic, and they may be different from actual ships made of steel plate. In future studies, we plan to experiment using iron plate (considering the material, thickness, and structure) used in actual ships. We hope that this study will help to improve the living environment and health of seafarers on ships.