• Title/Summary/Keyword: Safety of animal food

Search Result 667, Processing Time 0.025 seconds

Effects of dietary energy sources on early postmortem muscle metabolism of finishing pigs

  • Li, Yanjiao;Yu, Changning;Li, Jiaolong;Zhang, Lin;Gao, Feng;Zhou, Guanghong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.12
    • /
    • pp.1764-1772
    • /
    • 2017
  • Objective: This study investigated the effects of different dietary energy sources on early postmortem muscle metabolism of finishing pigs. Methods: Seventy-two barrow ($Duroc{\times}Landrace{\times}Yorkshire$, DLY) pigs ($65.0{\pm}2.0kg$) were allotted to three iso-energetic and iso-nitrogenous diets: A (44.1% starch, 5.9% crude fat, and 12.6% neutral detergent fibre [NDF]), B (37.6% starch, 9.5% crude fat, and 15.4% NDF) or C (30.9% starch, 14.3% crude fat, and 17.8% NDF). After the duration of 28-day feeding experiment, 24 pigs (eight per treatment) were slaughtered and the M. longissimus lumborum (LL) samples at 45 min postmortem were collected. Results: Compared with diet A, diet C resulted in greater adenosine triphosphate and decreased phosphocreatine (PCr) concentrations, greater activity of creatine kinase and reduced percentage bound activities of hexokinase (HK), and pyruvate kinase (PK) in LL muscles (p<0.05). Moreover, diet C decreased the phosphor-AKT level and increased the hydroxy-hypoxia-inducible $factor-1{\alpha}$ ($HIF-1{\alpha}$) level, as well as decreased the bound protein expressions of HK II, PKM2, and lactate dehydrogenase A (p<0.05). Conclusion: Diet C with the lowest level of starch and the highest levels of fat and NDF could enhance the PCr utilization and attenuate glycolysis early postmortem in LL muscle of finishing pigs.

Foods Derived from Cloned Animals and Management Policies in Worldwide

  • Lee, Soo-Jin;Jang, Yang-Ho;Kim, Hyo-Bi;Lee, Myoung-Heon;So, Byung-Jae;Yang, Byoung-Chul;Kang, Jong-Koo;Choe, Nong-Hoon
    • Food Science of Animal Resources
    • /
    • v.32 no.4
    • /
    • pp.389-395
    • /
    • 2012
  • Cloned animals are a result of asexual reproduction of animals using somatic cell nuclear transfer. Ever since the first report of a cloned sheep 'Dolly' produced by SCNT, increasing numbers of livestock, such as bovine and swine clones, have been generated worldwide. Foods derived from cloned animals have not been produced yet. However, the food safety of cloned animals has provoked controversy. The EU Food Safety Authority and U.S. Food and Drug Administration announced that milk and meat from cloned and non-cloned animals have no difference regarding food safety. However, food derived from cloned animals is considered unsuitable for eating vaguely. Moreover, there were scant information about cloned animals in Korea. Therefore, we surveyed the number of cloned animals worldwide including Korea and summarized the reports for cloned animals and discussed predictable problems.

Effects of Dietary Supplementation with Ferulic Acid or Vitamin E Individually or in Combination on Meat Quality and Antioxidant Capacity of Finishing Pigs

  • Lia, Y.J.;Lia, L.Y.;Li, J.L.;Zhang, L.;Gao, F.;Zhou, G.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.3
    • /
    • pp.374-381
    • /
    • 2015
  • This study aimed to evaluate the effects of vitamin E (VE), ferulic acid (FA) and their combination supplementation on meat quality and antioxidant capacities of finishing pigs. Sixty barrows were randomly allocated to four experimental diets using a $2{\times}2$ factorial arrangement with 2 VE supplemental levels (0 or 400 mg/kg) and 2 FA supplemental levels (0 or 100 mg/kg) in basal diets. After 28 days, six pigs per treatment were slaughtered. The results showed that VE supplementation increased loin eye area of pigs (p<0.05) and FA supplementation increased $pH_{45min}$ value (p<0.05). The interaction of $FA{\times}VE$ was observed in shear force of longissimus dorsi muscle (p<0.05). Moreover, supplementation with VE decreased hepatic and sarcous malondialdehyde (MDA) content, increased hepatic glutathione (GSH) content and sarcous glutathione peroxidase (GSH-Px) activity (p<0.05). Additionally, supplementation with FA increased hepatic GSH-Px activity and decreased sarcous MDA content (p<0.05). However, dietary treatment did not affect the expression of genes related to nuclear factor, erythroid 2-like 2 (NFE2L2) pathway. These results suggest that dietary FA and VE could partially improve meat quality and antioxidant capacity of finishing pigs, but not by activating NFE2L2 pathway under the normal conditions of farming.

Application of bio-preservation to enhance food safety: A review

  • Nethma Samadhi Ranathunga;Kaushalya Nadeeshani Wijayasekara;Edirisinghe Dewage Nalaka Sandun Abeyrathne
    • Food Science and Preservation
    • /
    • v.30 no.2
    • /
    • pp.179-189
    • /
    • 2023
  • Consumers and industry experts frequently have negative perceptions of most chemical preservatives. Although most people concede that they cannot resolve global food waste issues without preservatives, they prefer products without chemical preservatives. Numerous emerging technologies is now surpassing conventional methods for mitigating microbial food deterioration in response to consumer demand and fundamental health and safety considerations, including biological antimicrobial systems such as using food-grade microorganisms and their metabolites primarily originating from microorganisms, plants, and animals. Microbial compounds, including bacteriocins, bacteriophages, and anti-fungal agents, plant extracts such as flavonoids and essential oils; and animal-originated compounds, such as lysozyme, chitosan, and lactoferrin, are considered some of the major bio-preservatives. These natural compounds can be used alone or with other preservatives to improve food safety. Hence, the use of microbes or their metabolic byproducts to extend the shelf life of foods while maintaining safety standards is known as bio-preservation. To manufacture and consume foods in a safe condition, this review primarily aims to broaden knowledge amongst industry professionals and consumers regarding bio-preservation techniques, bio-preservatives, their classifications, and distinctive mechanisms to enhance food safety.

Status, Antimicrobial Mechanism, and Regulation of Natural Preservatives in Livestock Food Systems

  • Lee, Na-Kyoung;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.36 no.4
    • /
    • pp.547-557
    • /
    • 2016
  • This review discusses the status, antimicrobial mechanisms, application, and regulation of natural preservatives in livestock food systems. Conventional preservatives are synthetic chemical substances including nitrates/nitrites, sulfites, sodium benzoate, propyl gallate, and potassium sorbate. The use of artificial preservatives is being reconsidered because of concerns relating to headache, allergies, and cancer. As the demand for biopreservation in food systems has increased, new natural antimicrobial compounds of various origins are being developed, including plant-derived products (polyphenolics, essential oils, plant antimicrobial peptides (pAMPs)), animal-derived products (lysozymes, lactoperoxidase, lactoferrin, ovotransferrin, antimicrobial peptide (AMP), chitosan and others), and microbial metabolites (nisin, natamycin, pullulan, ε-polylysine, organic acid, and others). These natural preservatives act by inhibiting microbial cell walls/membranes, DNA/RNA replication and transcription, protein synthesis, and metabolism. Natural preservatives have been recognized for their safety; however, these substances can influence color, smell, and toxicity in large amounts while being effective as a food preservative. Therefore, to evaluate the safety and toxicity of natural preservatives, various trials including combinations of other substances or different food preservation systems, and capsulation have been performed. Natamycin and nisin are currently the only natural preservatives being regulated, and other natural preservatives will have to be legally regulated before their widespread use.

Dependence Potential of Quetiapine: Behavioral Pharmacology in Rodents

  • Cha, Hye Jin;Lee, Hyun-A;Ahn, Joon-Ik;Jeon, Seol-Hee;Kim, Eun Jung;Jeong, Ho-Sang
    • Biomolecules & Therapeutics
    • /
    • v.21 no.4
    • /
    • pp.307-312
    • /
    • 2013
  • Quetiapine is an atypical or second-generation antipsychotic agent and has been a subject of a series of case report and suggested to have the potential for misuse or abuse. However, it is not a controlled substance and is not generally considered addictive. In this study, we examined quetiapine's dependence potential and abuse liability through animal behavioral tests using rodents to study the mechanism of quetiapine. Molecular biology techniques were also used to find out the action mechanisms of the drug. In the animal behavioral tests, quetiapine did not show any positive effect on the experimental animals in the climbing, jumping, and conditioned place preference tests. However, in the head twitch and self-administration tests, the experimental animals showed significant positive responses. In addition, the action mechanism of quetiapine was found being related to dopamine and serotonin release. These results demonstrate that quetiapine affects the neurological systems related to abuse liability and has the potential to lead psychological dependence, as well.

Differences in Physicochemical and Nutritional Properties of Breast and Thigh Meat from Crossbred Chickens, Commercial Broilers, and Spent Hens

  • Chen, Yulian;Qiao, Yan;Xiao, Yu;Chen, Haochun;Zhao, Liang;Huang, Ming;Zhou, Guanghong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.6
    • /
    • pp.855-864
    • /
    • 2016
  • The objective of this study was to compare the physicochemical and nutritional properties of breast and thigh meat from commercial Chinese crossbred chickens (817 Crossbred chicken, 817C), imported commercial broilers (Arbor Acres broiler, AAB), and commercial spent hens (Hyline Brown, HLB). The crossbred chickens, commercial broilers and spent hens were slaughtered at their typical market ages of 45 d, 40 d, and 560 d, respectively. The results revealed that several different characteristic features for the three breeds. The meat of the 817C was darker than that of the other two genotypes. The 817C were also characterized by higher protein, lower intramuscular fat, and better texture attributes (cooking loss, pressing loss and Warner-Bratzler shear force [WBSF]) compared with AAB and HLB. The meat of the spent hens (i.e. HLB) was higher in WBSF and total collagen content than meat of the crossbred chickens and imported broilers. Furthermore, correlation analysis and principal component analysis revealed that there was a clear relationship among physicochemical properties of chicken meats. With regard to nutritional properties, it was found that 817C and HLB exhibited higher contents of essential amino acids and essential/non-essential amino acid ratios. In addition, 817C were noted to have highest content of microelements whereas AAB have highest content of potassium. Besides, 817C birds had particularly higher proportions of desirable fatty acids, essential fatty acids, polyunsaturated/saturated and (18:0+18:1)/16:0 ratios. The present study also revealed that there were significant differences on breast meat and thigh meat for the physicochemical and nutritional properties, regardless of chicken breeds. In conclusion, meat of crossbred chickens has some unique features and exhibited more advantages over commercial broilers and spent hens. Therefore, the current investigation would provide valuable information for the chicken meat product processing, and influence the consumption of different chicken meat.

Industry and Consumers Awareness for Effective Management of Functional Animal-based Foods in South Korea

  • Wi, Seo-Hyun;Park, Jung-Min;Wee, Sung-Hwan;Park, Jae-Woo;Kim, Jin-Man
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.4
    • /
    • pp.242-248
    • /
    • 2013
  • In recent years, manufacturers of animal-based foods with health claims have encountered difficulties in the labeling of their products because of a lack of regulation on defining the functionality of animal-based foods. Therefore, this study was conducted to establish the basic requirements for the development of a definition for functional animal-based foods by investigating consumer and industry awareness. Survey data were collected from 114 industry representatives and 1,100 consumers. The questions of the survey included items on production status and future production plans, functionality labeling, promotion plans, establishment of definition, the role of the government, consumer perception, and selection of products. The results show that both industry representatives and consumers believe that legislation and the provision of scientific evidence should be improved for the development of a functional animal-based foods market. The results obtained from this study will contribute to consumer trust by supplying correct information and can be utilized in the industry as basic data for the development of functional animal-based food products.