• Title/Summary/Keyword: Safety lines

Search Result 564, Processing Time 0.037 seconds

Galloping characteristics of a 1000-kV UHV iced transmission line in the full range of wind attack angles

  • Lou, Wenjuan;Wu, Huihui;Wen, Zuopeng;Liang, Hongchao
    • Wind and Structures
    • /
    • v.34 no.2
    • /
    • pp.173-183
    • /
    • 2022
  • The galloping of iced conductors has long been a severe threat to the safety of overhead transmission lines. Compared with normal transmission lines, the ultra-high-voltage (UHV) transmission lines are more prone to galloping, and the damage caused is more severe. To control the galloping of UHV lines, it is necessary to conduct a comprehensive analysis of galloping characteristics. In this paper, a large-span 1000-kV UHV transmission line in China is taken as a practical example where an 8-bundled conductor with D-shaped icing is adopted. Galerkin method is employed for the time history calculation. For the wind attack angle range of 0°~180°, the galloping amplitudes in vertical, horizontal, and torsional directions are calculated. Furthermore, the vibration frequencies and galloping shapes are analyzed for the most severe conditions. The results show that the wind at 0°~10° attack angles can induce large torsional displacement, and this range of attack angles is also most likely to occur in reality. The galloping with largest amplitudes in all three directions occurs at the attack angle of 170° where the incoming flow is at the non-iced side, due to the strong aerodynamic instability. In addition, with wind speed increasing, galloping modes with higher frequencies appear and make the galloping shape more complex, indicating strong nonlinear behavior. Based on the galloping amplitudes of three directions, the full range of wind attack angles are divided into five galloping regions of different severity levels. The results obtained can promote the understanding of galloping and provide a reference for the anti-galloping design of UHV transmission lines.

A Survey Study on the Learner's Recognition about the Descending Life Lines for the Fire Emergency Escaping Purpose (소방용 완강기에 대한 학습자의 인식 조사 연구)

  • Lee, Wonjoo;Lee, Chang-Seop
    • Fire Science and Engineering
    • /
    • v.32 no.2
    • /
    • pp.73-81
    • /
    • 2018
  • The purpose of this study is to survey the learner's recognition about the descending life lines for the fire emergency escaping purpose (DLL-FEEP). For that, we surveyed 307 adult males and females in Chungcheongnam-do, Daejeon metropolitan city, and Sejong metropolitan autonomous city. The surveyed data was statistically analyzed by SPSS 20.0 win program. In the results, 72.64% research participates have received a fire safety education. However, among them, 39.46% research participates have received a fire safety education without the contents of the DLL-FEEP. The style of the education for the DLL-FEEP is mainly the instructor-led training which is 79.26%. The 81.43% research participates have never used a DLL-FEEP. Based on the results in this study, the political proposal based on these results was as follows. We think that the expansion of the educational contents for the DLL-FEEP need in the fire safety education. We believe that results of this paper will help to serve as a basis for the efficient fire safety education with adults.

Improvement on Access Control of Hazard Zone in a Steel Manufacturing Industry (철강 제조업에서의 유해.위험구역 출입 관리 방안)

  • Seo, Seong-Hwa;Kim, Min;Weon, Jong-Il;Woo, Heung-Sik
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.3
    • /
    • pp.63-68
    • /
    • 2011
  • Access-control of hazard zone in a steel manufacturing industry is studied in terms of safety management. Based on the results of risk evaluation for hazard zone, three risk zones with low, middle and high level are categorized. These zones have different color door and locking shape depending on their risk levels. At the high level, red door and key-based locking system are employed to accessed-controled path. Furthermore, tagout, lockout, interlock system for emergency stop, warning and flashing are also introduced. New standardized procedure of access-control for various hazard zones, which could help to greatly contribute to the prevention of accidents in advance, is proposed considering the risk level and the condition of given hazard zones. The standardized procedure of access-management suggested in this study will take an effective role as one of safety guide lines for hazardous workshop of manufacturing industries.

Accelerated Aging of Tracking Phenomena Using Weibull Distribution (와이블 분포함수를 이용한 트래킹 현상의 가속열화)

  • Lim, Jang-Seob
    • Proceedings of the KIEE Conference
    • /
    • 2008.10a
    • /
    • pp.137-138
    • /
    • 2008
  • In this paper, the statistical judgement using IR camera was discussed and investigated. Acceleration experiments were carried out for the possibility of weibull distribution and then, the acquired data were replaced with quantitative value for safety diagnosis of distribution lines.

  • PDF

ROLE OF PASSIVE SAFETY FEATURES IN PREVENTION AND MITIGATION OF SEVERE PLANT CONDITIONS IN INDIAN ADVANCED HEAVY WATER REACTOR

  • Jain, Vikas;Nayak, A.K.;Dhiman, M.;Kulkarni, P.P.;Vijayan, P.K.;Vaze, K.K.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.625-636
    • /
    • 2013
  • Pressing demands of economic competitiveness, the need for large-scale deployment, minimizing the need of human intervention, and experience from the past events and incidents at operating reactors have guided the evolution and innovations in reactor technologies. Indian innovative reactor 'AHWR' is a pressure-tube type natural circulation based boiling water reactor that is designed to meet such requirements, which essentially reflect the needs of next generation reactors. The reactor employs various passive features to prevent and mitigate accidental conditions, like a slightly negative void reactivity coefficient, passive poison injection to scram the reactor in event of failure of the wired shutdown systems, a large elevated pool of water as a heat sink inside the containment, passive decay heat removal based on natural circulation and passive valves, passive ECC injection, etc. It is designed to meet the fundamental safety requirements of safe shutdown, safe decay heat removal and confinement of activity with no impact in public domain, and hence, no need for emergency planning under all conceivable scenarios. This paper examines the role of the various passive safety systems in prevention and mitigation of severe plant conditions that may arise in event of multiple failures. For the purpose of demonstration of the effectiveness of its passive features, postulated scenarios on the lines of three major severe accidents in the history of nuclear power reactors are considered, namely; the Three Mile Island (TMI), Chernobyl and Fukushima accidents. Severe plant conditions along the lines of these scenarios are postulated to the extent conceivable in the reactor under consideration and analyzed using best estimate system thermal-hydraulics code RELAP5/Mod3.2. It is found that the various passive systems incorporated enable the reactor to tolerate the postulated accident conditions without causing severe plant conditions and core degradation.

Solar Power Plant Inspection Techniques and Practices to Improve Inadequate Facilities (태양광 발전설비 검사기법 및 부적합설비 개선사례 분석)

  • Park, Byeong-Ha;Go, Seok-Il;Ahn, Seon-Ju;Choi, Joon-Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.439-444
    • /
    • 2012
  • Photovoltaic energy is regarded as the key solution to the instability of energy supply and environmental pollution, and it is spreading from the developed countries to world wide. This paper looks into guide lines of KESCO (Korea electrical Safety Corporation) on Photovoltaic system and analyzed case of inconsistencies of pre-service inspection. Through these analyses it will be possible to prevent possible accidents in the process of installing Photovoltaic system and thus ensure electrical safety of Photovoltaic system.

  • PDF

Characteristics of a Corona between a Wiring Clamp (Dead End Clamp) and a Porcelain Insulator Used in a 154kV Power Receptacle

  • Han, Woon-Ki
    • International Journal of Safety
    • /
    • v.7 no.1
    • /
    • pp.21-25
    • /
    • 2008
  • The occurrence of a corona is that electrical discharge due to the heterogeneity that occurs when an electrical field is concentrated in an electrode due to a cusp formed on said electrode. Wire treatment at the end of a 154kV dead end clamp for end users accelerates the occurrence of corona, which in turn leads to power loss and noise. In this study, the characteristics of the corona which occurs between porcelain insulators and support clamps of overhead lines used in l54kV power receiving facilities for end users were investigated. The corona, which cannot be identified by one common method, was measured utilizing a UV image camera. A risk assessment for fire damage and its status was suggested. The stress distribution of the electrical field by length of bare wire was suggested by means of the finite element method (FEMLAB). As a result, it was found to affect a porcelain insulators. These results can be utilized for the enhancement of clamp installation and safety in power facilities.

The analysis of checking results and electric shock accident happens at domestic and foreign low-voltage handhole (국내외 저압지중함의 감전사고 및 점검결과 분석)

  • Kim, Han-Sang;Bang, Sun-Bae;Kim, Chong-Min;Han, Woon-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2007.04b
    • /
    • pp.91-94
    • /
    • 2007
  • The increased use of underground power distribution as opposed to overhead lines contributes to the aesthetics of the downtown areas. But there is an inherent risk of accidental electrocution should there be damage to the insulation of the cable because of heavy rain. Should a pedestrian make contact with this cable indirectly, via a man hole cover, electrocution could result. In this paper, we analyse electrical shock accident and checking results in this low-voltage handhole.

  • PDF

Characteristics of a Corona between a Wiring Clamp(Dead End Clamp) and a Porcelain Insulator Used in a 154[kV] Power Receptacle

  • Han, Un-Ki;Kim, Jong-Min;Bang, Sun-Bae;Kim, Han-Sang;Choi, Hyeong-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.9
    • /
    • pp.57-63
    • /
    • 2007
  • The occurrence of a corona is that electrical discharge due to the heterogeneity that occurs when an electrical field is concentrated in an electrode due to a cusp formed on said electrode. Wire treatment at the end of a 154[kV] dead end clamp for end users accelerates the occurrence of corona, which in turn leads to power loss and noise. In this study, the characteristics of the corona which occurs between porcelain insulators and support clamps of overhead lines used in 154[kV] power receiving facilities for end users were investigated. The corona, which cannot be identified by one common method, was measured utilizing a UV image camera. A risk assessment for fire damage and its status was suggested. The stress distribution of the electrical field by length of bare wire was suggested by means of the finite element method(FEMLAB). As a result, it was found to affect a porcelain insulators. These results can be utilized for the enhancement of clamp installation and safety in power facilities.

Accident Risk Assessment between Power Cable Head and Safety Shutter in Medium Voltage Metal-Clad Switchgear (고압폐쇄분전반의 전력케이블 헤드와 안전셔터에서의 사고위험 평가)

  • Shong, Kil-Mok;Han, Woon-Ki;Kim, Young-Seok
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.264-267
    • /
    • 2006
  • This paper describes the accident analysis by modeling the current transformer mounting in meaium voltage metal-clad switchgear(MCSG). In analyzing the accident the reconstruction at the current transformer mounting(VCB connecting guide) has to be taken into account. The accident was modelled as a 3-phase ground fault mounting between the end plate of a high voltage lines and the safety shutter at the current transformer mounting of the VCB inside the metal clad switchgear. Since the outside maintenance of the metal clad switchgear is restricted by the enclosed compartments, its circumference has to be kept clean. Through the reconstruction results, it was confirmed that the fault of the enclosed switchboard could be reduced when the shutter made of Fe material was changed into an insulation.

  • PDF