• Title/Summary/Keyword: Safety limits

Search Result 910, Processing Time 0.024 seconds

Permissible Safety Limits in Local Cooling Focused on the Parts of Human Body (신체 부위별 냉각허용한계온도에 관한 연구)

  • Hwang, Kyoung-Sook;Choi, Jeong-Wha;Kim, Kyung-Ran
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.1 s.160
    • /
    • pp.119-130
    • /
    • 2007
  • The objects of this study were to investigate responses and peculiarity during local cooling by parts of the human body and to show permissible safety limits without injurious to his health because of excessive cooling when he works hot environments. It were measured rectal temperature, skin temperature, heart rate, total body weight loss, local sweat in back and thigh, clothing microclimate and subjective sensation on 8 subjects and cooling parts were head, neck, chest, abdomen, back, waist, hip, upper arm, forearm, hand, thigh, calf and foot. According to above-mentioned the first experiment, we chose permissible safety limits by parts of the human body for one hour. In the second experiment, it was showed permissible safety limits by parts which examined their safety about health through 4 hours cooling test on 3 subjects. The results are as follows: 1. As a result of the first experiment, we chose permissible safety limits by parts, as follows, head $25^{\circ}C$, neck $20^{\circ}C$, chest $27^{\circ}C$, abdomen $25^{\circ}C$, back $20^{\circ}C$, waist $20^{\circ}C$, upper arm $20^{\circ}C$, forearm $20^{\circ}C$, hand $23^{\circ}C$, thigh $20^{\circ}C$, calf $20^{\circ}C$ and foot $23^{\circ}C$ in $37^{\circ}C$, 50%R.H. environment for 1 hour. 2. As a result of the second experiment, cooling on these safety limits temperatures except chest didn't have a bad effect on health. So it was proved that right permissible safety limits of chest was $28^{\circ}C$. From these results, it has been suggested that skin temperature didn't fall below permissible safety limits when human body was to be cool by parts.

Derived Limits for Radiological Protection Against ionizing Radiation Based on ICRP-60 Recommendations

  • Jang, Si-Young;Lee, Byung-Soo
    • Nuclear Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.350-360
    • /
    • 2000
  • In Korea, the dose limits are reduced and are set at the ICRP-60 iimits. However, derived limits tabulated as MPC in air and water are still specified in Notice No.98-12. There are some discrepancies between the primary dose limits and MPCs in air and water. Therefore, in order to accept ICRP-60 recommendations fully, derived limits such as ALI, DAC, ECL for radiological protection against ionizing radiation based on ICRP-60 recommendations were calculated using modified methods of those of 10 CFR part 20, dose limits and committed effective dose coefficients of the Basic Safety Standards of the IAEA. The derived limits in this study were also compared with those prescribed in 10 CFR part 20 as well as MPCs of Notice No. 98-12 in order to analyze the impact of implementing derived limits on nuclear facilities. ECLs in air and water for the control of radioactive discharge into the environment in this study are shown to have lower values (i.e. more conservative), for most part, than those in Notice No. 98-12. Especially, for uranium elements, ECLs in water are approximately a magnitude in the order of two lower than those in Notice No.98-12.

  • PDF

A Study on Explosive Limits of Flammable Materials - Explosive Limits of Ternary System by Means of Solution Thermodynamics and MRSM Model - (가연성물질의 폭발한계에 관한 연구 - 용액열역학 및 MRSM 모델에 의한 3성분계 폭발한계 -)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.91-97
    • /
    • 2005
  • The research on the explosive limits is one of fundamental fields of combustion process, and information on the explosive limits of mixture of fuel and oxidant, with or without additives, is very important for the prevention in industrial fire and explosion accidents. Explosive limits of all compounds and solvent mixtures can be calculated with the appropriate use of the fundamental laws of Raoult, Batten, Le Chatelier and MRSM(modified response surface methodology) model. In this study, the reference values of lower explosive limits(LEL) of the ethanol+toluene+ethylacetate system were compared with the calculated values by using the solution thermodynamics and the MRSM model, respectively. The values calculated by the proposed equations were a good agreement with literature data within a few percent. By means of this methodology, it is possible to evaluate reliability of experimental data of the lower explosive limits of the flammable mixtures. Also, from given results, it is possible to predict explosive limits of the other flammable liquid mixtures used in the chemical process by the use of the proposed equations.

OPΔT and OTΔT Trip Setpoint Generation Methodology (OPΔT 및 OTΔT트립설정치의 생산방법)

  • Ki In Han
    • Nuclear Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.106-115
    • /
    • 1984
  • Core safety limits define reactor operating conditions and parameters that will assure fuel rod and reactor system's integrity. Limiting safety system settings (LSSS) programmed into reactor protection system (RPS) then ensure a rapid reactor trip to prevent or suppress conditions which might violate the core safety limits. Generation of the LSSS must properly take into account uncertainties in both calculated and measured parameters in order to assure, with an appropriate degree of confidence, that the RPS will protect the core safety limits. Reviewed in this report are Westinghouse RPS setpoint generation philosophy, methodology of safety limit development and LSSS generation procedure. The Westinghouse RPS trip setpoint generation methodology has been established based on the calculation of core safety limits and the selection of LSSS allowing appropriate uncertainties in a conservative manner. Such conservative values of setpoint assure a high degree of core protection against fuel melting and occurrence of DNB.

  • PDF

A Study on the Criteria for Selection of Permitted Standard Substances in the Occupational Safety and Health Act in Korea (산업안전보건법상 허용기준 설정대상 유해인자 선정기준 마련에 관한 연구)

  • Lee, Junghyun;Hahm, Miran;Lee, Eun Jung;Lee, Kwon Seob;Hong, Mun Ki;Byeon, Sang-Hoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.2
    • /
    • pp.97-104
    • /
    • 2017
  • Objectives: This study aims to suggest definitions in accordance with the purpose of the permissible limit system in order to suggest criteria for substances with permissible exposure limits and expanded candidate substances under the Occupational Safety and Health Act in Korea. Methods: The occupational safety and health related acts from six countries were researched, including from Korea. To understand the health hazards of substances with permissible exposure limits, health hazards were prioritized for 211 substances through working environment measurement on the basis of KOSHA's preceding research. Results: To suggest criteria for substances with permissible exposure limits and expanded candidate substances, definitions were suggested in accordance with the purpose of the permissible limit system. Based on the health hazard priorities for the working environment, selection criteria were identified. Conclusions: Three suggestions for substances with permissible exposure limits were proposed including substances where occurred serious health hazards such as carcinogenicity, germ cell mutagenicity, and reproductive toxicity to workers.

A Study on Estimation of Lower Explosive Limits of Alcohol Compounds (알코올화합물의 폭발하한계 추산에 관한 연구)

  • Dong-Myeong Ha;Yong-Chan Choi;Haejin Oh;Su-kyung Lee
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2002.11a
    • /
    • pp.291-296
    • /
    • 2002
  • Flammable compounds are indispensible in domestic as well as in industrial fields as fuel, solvent and raw materials. The fire and explosion properties necessary for safe storage, transport, process design and operation of handling flammable substances are lower explosive limits(LEL), upper explosive limits(UEL), flash point, fire point, AIT(auto ignition temperature), MIE(minimum ignition energy), MOC(minimum oxygen concentration) and heats of combustion.

  • PDF

FALCON code-based analysis of PWR fuel rod behaviour during RIA transients versus new U.S.NRC and current Swiss failure limits

  • Khvostov, G.;Gorzel, A.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3741-3758
    • /
    • 2021
  • Outcomes of the FALCON code analysis-related part of the STARS-ENSI Service Project on Evaluation of the new U.S.NRC RIA Fuel Safety Criteria and Application to the Swiss Reactors are presented. Substantial conservatism of the updated safety limits for high-temperature and PCMI cladding failure, as proposed in the NRC Regulatory Guide RG 1.236, is confirmed. Applicability of the updated failure limits to fuel safety analysis in the Swiss PWRs, as applied to standard fuel designs using UO2 fuel pellets and SRA Zry-4 as cladding materials is discussed. Conducting of new integral RIA tests with irradiated samples using doped- and gadolinia fuel pellets to support appropriate fuel safety criteria for RIA events is recommended.

Prediction of Upper Explosion Limits(UEL) by Measurement of Upper Flash Point Using Setaflash Apparatus for n-Alcohols (Setaflash 장치를 이용한 노말 알코올류의 상부인화점 측정에 의한 폭발상한계의 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.2
    • /
    • pp.35-40
    • /
    • 2010
  • Explosion limit and flash point are the major combustion properties used to determine the fire and explosion hazards of the flammable substances. In this study, in order to predict upper explosion limits(UEL), the upper flash point of n-alcohols were measured under the VLE(vapor-liquid equilibrium) state by using Setaflash closed cup tester(ASTM D3278). The UELs calculated by Antoine equation using the experimental upper flash point are usually lower than the several reported UELs. From the given results, using the proposed experimental and predicted method, it is possible to research the upper explosion limits of the other flammable substances.

Prediction of Upper Explosion Limits(UEL) by Measurement of Upper Flash Points for n-Alkanes and Aromatic Compounds (노말알칸류와 방향족탄화수소류의 상부인화점 측정에 의한 폭발상한계의 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.59-64
    • /
    • 2011
  • Explosion limit and flash point are the major combustion properties used to determine the fire and explosion hazards of the flammable substances. In this study, in order to predict upper explosion limits(UELs), the upper flash point of n-alkanes and aromatic compounds were measured under the VLE(vapor-liquid equilibrium) state by using Setaflash closed cup tester(ASTM D3278). The UELs calculated by Antoine equation and chemical stoichiometric coefficient tusing the experimental upper flash point were compared with the several reported UELs. From the given results, using the proposed experimental and predicted method, it is possible to research the upper explosion limits of the other flammable substances.

A Study on Legal Limits of Occupational Safety & Health Law and Application of Private Standards (산업안전보건법의 한계와 민간기준의 활용에 관한 연구)

  • Jung, Jinwoo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.2
    • /
    • pp.103-112
    • /
    • 2014
  • Objectives: The present system of occupational safety and health law gives priority to traditional command and control regulations. However, this may give rise to problems such as the delay of standard-setting and shortages of human resources. The aim of this study is to examine the usability of private standards in occupational safety and health systems. Materials: After the limits of occupational safety and health law were examined, an application plan for private norms (EN, as enforced in the EU) and occupational safety and health management systems (OSHMS) was investigated. Results: The utilization of private norms and OSHMS may address the limits of the current legal system. In particular, OSHMS is known internationally as a measure for achieving improvements in overall occupational safety and health performance. As a result, occupational safety and health law and private norms/OSHMS are complementary to one another. Conclusions: Even though the utilization of private standards may give rise to legal questions, such standards as complementary measures to traditional command and control regulations need to be utilized progressively in occupational safety and health systems.