• Title/Summary/Keyword: Safety criterion

Search Result 516, Processing Time 0.024 seconds

Analysis on Risk Factors of Reactor Containment Building Construction using Analytic Hierarchy Process (계층 분석 방법을 이용한 원자로 격납 건물 시공의 리스크 요인 분석)

  • Shin, Dae-Woong;Shin, Yoonseok;Kim, Gwang-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.4
    • /
    • pp.425-431
    • /
    • 2015
  • Since the construction of Kori 1 was completed in 1978, the construction projects for nuclear power plant are increasingly expanded into domestic and foreign sites. However, some of construction sites of nuclear power plant have the problems of process delay and cost loss due to lack of ability of risk management. The construction of reactor containment building in nuclear power plant is especially dotted with many risk factors because it needs professional skills and large-scale resources due to long duration compared with different construction phase. Therefore, it needs the study that analyzes risk factors expected in construction of reactor containment building and suggests way of stable performance of projects. So, this study assesses risk factors of construction of reactor containment building. For the objectives, this study uses survey for group of minority specialists of 36 experts. The risks of 24 factors is classified by criterions of process, cost, safety, and quality and the results of assessment is analyzed by analytic hierarchy process. As the results, the importance and priority of risk factors classified by each criterion were calculated and the applicability of analytic hierarchy process was identified to analyze risk factors of nuclear power plant construction. These will be baseline data for risk management in construction phase of reactor containment building.

A Study of the Selection of the Valuation Items of the Environmental Illumination Design for a Bridge (교량의 경관조명연출디자인 평가항목 도출에 관한 연구)

  • Cho, Hyun-Choul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.22-30
    • /
    • 2004
  • It is an attempt to suggest the standard valuation method of the environmental illumination for the bridges across the Han-river from an aesthetic point of view, deviating from the technical and traditional viewpoint. In Korea the current evaluation criterion to verify the value of bridge design has a partiality for the technical and structural safety rather than the sentient beauty on the whole. However, the recently cultural reform of Korean mass society with the elevation of the standard of living forces the engineering designers for bridges to focus not only on competing physical structures but also on enhancing the formative beauty including the illumination effects for night view. Additionally, the new policy, which transforms the environments around the Han-river into the major tourist attractions has been executing strongly by the city authorities to revitalize the symbolic, historic, and cultural identity of the capital city with the introduction of the high-quality environmental illumination for the bridges. As a result, It becomes necessary to establish the manual and standardization of the environmental illumination planning for the city in terms of the formative beauty, and this study is to suggest the valuation model method of the environmental illumination for the bridges as the initial step of the standardization. In the study, the valuation items of the standard questionnaire are selected by the documentary records and the consultation of various experts in architecture, design, fine art, urban planning and even administration to verify the essential elements of the aesthetic beauty with the local amenity and the environmental harmony for the chosen bridges across the Han-river.

Analysis on Intersection Traffic Signal Locations Change and Characteristics of Dilemma Zone (교차로 신호기 위치 조정과 딜레마존 특성 분석)

  • Lim, Sam Jin;Lee, Young-Ihn;Kim, Kyung Hee
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.1
    • /
    • pp.3-13
    • /
    • 2013
  • This paper reviews the characteristics of dilemma zone by analysing the influence exerted by actual location of intersection traffic signal on behaviour of drivers approaching signalized intersection in urban area. The analysis of approach speed was based upon a 'before and after' comparison, measured at three sites where the locations of traffic signals were changed. The study demonstrated that, when traffic signal changed to yellow, the scales of dilemma zone were narrowed in case of stopping cars by moving up the starting point of the dilemma zone due to lowered spot speed. On the other hand, in case of passing cars, the end points of dilemma zone were moved further out to the rear due to increased spot speed. Therefore, changing traffic signal locations could make an impact to increase intersection safety through reducing the scales of dilemma zone. This study also found that, in cases involving vehicles with similar approach speeds, spot speeds could be differentiated following the change of signal locations due to the fact that there can be greater differences in both braking point and deceleration rate. Thus, when considering the appropriate measuring of dilemma zone, 'spot speed' rather than 'approach speed' appeared to be more appropriate criterion.

A Study on Characteristics and Predictions of Seasonal Chlorophyll-a using Bayseian Regression in Paldang Watershed (베이지안 추정을 이용한 팔당호 유역의 계절별 클로로필a 예측 및 오염특성 연구)

  • Kim, Mi-Ah;Shin, Yuna;Kim, Kyunghyun;Heo, Tae-Young;Yoo, Moonkyu;Lee, Su-Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.6
    • /
    • pp.832-841
    • /
    • 2013
  • In recent years, eutrophication in the Paldang Lake has become one of the major environmental problems in Korea as it may threaten drinking water safety and human health. Thus it is important to understand the phenomena and predict the time and magnitude of algal blooms for applying adequate algal reduction measures. This study performed seasonal water quality assessment and chlorophyll-a prediction using Bayseian simple/multiple linear regression analysis. Bayseian regression analysis could be a useful tool to overcome limitations of conventional regression analysis. Also it can consider uncertainty in prediction by using posterior distribution. Generally, chlorophyll-a of a P2(Paldang Dam 2) site showed high concentration in spring and it was similar to that of P4(Paldang Dam 4) site. For the development of Bayseian model, we performed seasonal correlation. As a result, chlorophyll-a of a P2 site had a high correlation with P5(Paldang Dam 5) site in spring (r = 0.786, p<0.05) and with P4 in winter (r = 0.843, p<0.05). Based on the DIC (Deviance Information Criterion) value, critical explanatory variables of the best fitting Bayesian linear regression model were selected as a $PO_4-P$ (P2), Chlorophyll-a (P5) in spring, $NH_3-N$ (P2), Chlorophyll-a (P4), $NH_3-N$ (P4) in summer, DTP (P2), outflow (P2), TP (P3), TP (P4) fall, COD (P2), Chl-a (P4) and COD (P4) in winter. The results of chlorophyll-a prediction showed relatively high $R^2$ and low RMSE values in summer and winter.

A Planning Framework of BIM-based Work-Type Packaging for Educational Facility Maintenance (교육시설 유지관리 BIM 기반 공종 패키지 플래닝 프레임워크)

  • Bae, Chang-Joon;Park, Sang-Hun;Yoon, Sun-Jae;Lee, Mi-Young;Koo, Kyo-jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.200-210
    • /
    • 2020
  • The maintenance of educational facilities was assembled in 12 project classifications of the Educational Improvement Program. The priorities were decided by the evaluation scores derived from the condition investigation, and maintenance works were budgeted in the order of priorities. These priorities were a schedule for conducting maintenance and an important criterion for obtaining a construction order. Several restrictions in the condition investigation exist, which derives budgets and conducts maintenance separately based on the priorities. An educational facility manager has a restriction in quantity take-off, which results in an incorrect budget. Discomfort would occur in an educational environment, and a period of infringing safety would increase. This study proposes applying a BIM in the condition investigation and the planning framework for work-type packaging. A BIM supports a budget calculation and derives evaluation scores by linking a repair and an inspection result. The work-type packaging algorithm divides a budget allocation range and derives the result of a grouped work-types applied in an equivalent space and element. As a result of applying cases, it could shorten the duration by approximately 37.4%. Its usability in selecting a grouped work-type was evaluated through an assessment with workers.

DB-Based Feature Matching and RANSAC-Based Multiplane Method for Obstacle Detection System in AR

  • Kim, Jong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.7
    • /
    • pp.49-55
    • /
    • 2022
  • In this paper, we propose an obstacle detection method that can operate robustly even in external environmental factors such as weather. In particular, we propose an obstacle detection system that can accurately inform dangerous situations in AR through DB-based feature matching and RANSAC-based multiplane method. Since the approach to detecting obstacles based on images obtained by RGB cameras relies on images, the feature detection according to lighting is inaccurate, and it becomes difficult to detect obstacles because they are affected by lighting, natural light, or weather. In addition, it causes a large error in detecting obstacles on a number of planes generated due to complex terrain. To alleviate this problem, this paper efficiently and accurately detects obstacles regardless of lighting through DB-based feature matching. In addition, a criterion for classifying feature points is newly calculated by normalizing multiple planes to a single plane through RANSAC. As a result, the proposed method can efficiently detect obstacles regardless of lighting, natural light, and weather, and it is expected that it can be used to secure user safety because it can reliably detect surfaces in high and low or other terrains. In the proposed method, most of the experimental results on mobile devices reliably recognized indoor/outdoor obstacles.

Spatio-temporal analysis with risk factors for five major violent crimes (위험요인이 포함된 시공간 모형을 이용한 5대 강력범죄 분석)

  • Jeon, Young Eun;Kang, Suk-Bok;Seo, Jung-In
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.5
    • /
    • pp.619-629
    • /
    • 2022
  • The five major violent crimes including murder, robbery, rape·forced indecent act, theft, and violence are representative crimes that threaten the safety of members of society and occur frequently in real life. These crimes have negative effects such as lowering the quality of citizens' life. In the case of Seoul, the capital of Korea, the risk for the five major violent crimes is increasing because the population density of Seoul is increasing as a large number of people in the provinces move to Seoul. In this study, to reduce this risk, the relative risk for the occurrence of the five major violent crimes in Seoul is modeled using three spatio-temporal models. In addition, various risk factors are included to identify factors that significantly affect the relative risk of the five major violent crimes. The best model is selected in terms of the deviance information criterion, and the analysis results including various visualizations for the best model are provided. This study will help to establish efficient strategies to sustain people's safe everyday living by analyzing important risk factors affecting the risk of the five major violent crimes and the relative risk of each region.

Vehicle Collision Simulation for Roadblocks in Nuclear Power Plants Using LS-DYNA (LS-DYNA를 이용한 원자력발전소의 로드블록에 대한 차량 충돌 시뮬레이션)

  • SeungGyu Lee;Dongwook Kim;Phill-Seung Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.2
    • /
    • pp.113-120
    • /
    • 2023
  • This paper introduces a simulation method for the collision between roadblocks and vehicles using LS-DYNA. The need to evaluate the performance of anti-ram barriers to prepare for vehicle impact has increased since vehicle impact threats have been included as a design criterion for nuclear power plants. Anti-ram barriers are typically certified for their performance through collision experiments. However, because Koreas has no performance testing facilities for anti-ram barriers, their performance can only be verified through simulations. LS-DYNA is a specialized program for collision simulation. Various organizations, including NCAC, distributes numerical models that have been validated for their accuracy with collision tests. In this study, we constructed a finite element model of the most critical vehicle barrier module and simulated collision between roadblocks and vehicles. The calculated results were verified by applying the validation criteria for vehicle safety facility collision simulations of NCHRP 179.

Lateral Earth Pressures Acting on Anchored Diaphragm Walls and Deformation Behavior of Walls during Excavation (지하굴착시 앵커지지 지중연속벽에 작용하는 측방토압 및 벽체의 변형거동)

  • Hong, Won-Pyo;Lee, Moon-Ku;Lee, Jae-Ho;Yun, Jung-Mann
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.77-88
    • /
    • 2007
  • Lateral earth pressure and horizontal displacement of the diaphragm walls constructed in multi-soil layers were analyzed by the field instrumentation from six building construction sites in urban area. The distribution of the developed earth pressure of the anchored diaphragm walls during excavation shows approximately a trapezoid diagram. The maximum earth pressure of anchored diaphragm walls corresponds to $0.45{\gamma}H$ and the earth pressure acts at the upper part of the walls. The maximum earth pressure is two times larger than the empirical earth pressure of flexible walls in sands suggested by Terzaghi and Peck(1967), Tschebotarioff(1973), and Hong and Yun(1995a). The horizontal displacement of diaphragm walls is closely related with supporting systems such as struts, anchors, and so on. The horizontal displacement of anchored walls shows less than 0.1 percent of the excavated depth, and the horizontal displacement of strutted walls shows less than 0.25 percent of the excavated depth. Therefore, the restraining effect of horizontal displacement to the anchored diaphragm walls is larger than the strutted diaphragm walls. In addition, since the horizontal displacement of the diaphragm walls is lower than the criterion, $\delta=0.25%H$, used for control the anchored retention wall using soilder piles, the safety of excavation sites applied with the diaphragm walls is pretty excellent.

Analysis of Stability and Behavior of Slope with Solar Power Facilities Considering Seepage of Rainfall (태양광 발전시설이 설치된 사면의 강우시 침투를 고려한 안정성 및 거동 분석)

  • Yu, Jeong-Yeon;Lee, Dong-Gun;Song, Ki-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.7
    • /
    • pp.57-67
    • /
    • 2023
  • Slope failures during rainfall have been observed in mountainous areas of South Korea as a result of the presence of solar power facilities. The seepage behavior and pore pressure distribution differ from typical slopes due to the presence of impermeable solar panels, and the load imposed by the solar power structures also affects the slope behavior. This study aims to develop a method for evaluating the stability of slopes with solar power facilities and to analyze vulnerable points by considering the maximum slope displacement. To assess the slope stability and predict behavior while considering rainfall seepage, a combined seepage analysis and finite difference method numerical analysis were employed. For the selected site, various variables were assumed, including parameters related to the Soil Water Characteristic Curve, strength parameters that satisfy the Mohr-Coulomb failure criterion, soil properties, and topographic factors such as slope angle and bedrock depth. The factors with the most significant influence on the factor of safety (FOS) were identified. The presence of solar power facilities was found to affect the seepage distribution and FOS, resulting in a decreasing trend due to rainfall seepage. The maximum displacement points were concentrated near the upper (crest) and lower (toe) sections of the slope.