• Title/Summary/Keyword: Safety camera

Search Result 475, Processing Time 0.027 seconds

Multi-camera-based 3D Human Pose Estimation for Close-Proximity Human-robot Collaboration in Construction

  • Sarkar, Sajib;Jang, Youjin;Jeong, Inbae
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.328-335
    • /
    • 2022
  • With the advance of robot capabilities and functionalities, construction robots assisting construction workers have been increasingly deployed on construction sites to improve safety, efficiency and productivity. For close-proximity human-robot collaboration in construction sites, robots need to be aware of the context, especially construction worker's behavior, in real-time to avoid collision with workers. To recognize human behavior, most previous studies obtained 3D human poses using a single camera or an RGB-depth (RGB-D) camera. However, single-camera detection has limitations such as occlusions, detection failure, and sensor malfunction, and an RGB-D camera may suffer from interference from lighting conditions and surface material. To address these issues, this study proposes a novel method of 3D human pose estimation by extracting 2D location of each joint from multiple images captured at the same time from different viewpoints, fusing each joint's 2D locations, and estimating the 3D joint location. For higher accuracy, the probabilistic representation is used to extract the 2D location of the joints, considering each joint location extracted from images as a noisy partial observation. Then, this study estimates the 3D human pose by fusing the probabilistic 2D joint locations to maximize the likelihood. The proposed method was evaluated in both simulation and laboratory settings, and the results demonstrated the accuracy of estimation and the feasibility in practice. This study contributes to ensuring human safety in close-proximity human-robot collaboration by providing a novel method of 3D human pose estimation.

  • PDF

The Development of Infrared Thermal Imaging Safety Diagnosis System Using Pearson's Correlation Coefficient (피어슨 상관계수를 이용한 적외선 열화상 안전 진단 시스템 개발)

  • Jung, Jong-Moon;Park, Sung-Hun;Lee, Yong-Sik;Gim, Jae-Hyeon
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.6
    • /
    • pp.55-65
    • /
    • 2019
  • With the rapid development of the national industry, the importance of electrical safety was recognized because of a lot of new electrical equipment are installing and the electrical accidents have been occurring annually. Today, the electrical equipments is inspect by using the portable Infrared thermal imaging camera. but the most negative element of using the camera is inspected for only state of heating, the reliable diagnosis is depended with inspector's knowledge, and real-time monitoring is impossible. This paper present the infrared thermal imaging safety diagnosis system. This system is able to monitor in real time, predict the state of fault, and diagnose the state with analysis of thermal and power data. The system consists of a main processor, an infrared camera module, the power data acquisition board, and a server. The diagnostic algorithm is based on a mathematical model designed by analyzing the Pearson's Correlation Coefficient between temperature and power data. To test the prediction algorithm, the simulations were performed by damaging the terminals or cables on the switchboard to generate a large amount of heat. Utilizing these simulations, the developed prediction algorithm was verified.

Deep Learning(CNN) based Worker Detection on Infrared Radiation Image Analysis (딥러닝(CNN)기반 저해상도 IR이미지 분석을 통한 작업자 인식)

  • Oh, Wonsik;Lee, Ugwiyeon;Oh, Jeongseok
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.8-15
    • /
    • 2018
  • worker-centered safety management for hazardous areas in the plant is required. The causes of gas accidents in the past five years are closely related to the behavior of the operator, such as careless handling of the user, careless handling of the suppliers, and intentional, as well as equipment failure and accident of thought. In order to prevent such accidents, real-time monitoring of hazardous areas in the plant is required. However, when installing a camera in a work space for real-time monitoring, problems such as human rights abuse occur. In order to prevent this, an infrared camera with low resolution with low exposure of the operator is used. In real-time monitoring, image analysis is performed using CNN algorithm, not human, to prevent human rights violation.

3D Depth Camera-based Obstacle Detection in the Active Safety System of an Electric Wheelchair (전동휠체어 주행안전을 위한 3차원 깊이카메라 기반 장애물검출)

  • Seo, Joonho;Kim, Chang Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.552-556
    • /
    • 2016
  • Obstacle detection is a key feature in the safe driving control of electric wheelchairs. The suggested obstacle detection algorithm was designed to provide obstacle avoidance direction and detect the existence of cliffs. By means of this information, the wheelchair can determine where to steer and whether to stop or go. A 3D depth camera (Microsoft KINECT) is used to scan the 3D point data of the scene, extract information on obstacles, and produce a steering direction for obstacle avoidance. To be specific, ground detection is applied to extract the obstacle candidates from the scanned data and the candidates are projected onto a 2D map. The 2D map provides discretized information of the extracted obstacles to decide on the avoidance direction (left or right) of the wheelchair. As an additional function, cliff detection is developed. By defining the "cliffband," the ratio of the predefined band area and the detected area within the band area, the cliff detection algorithm can decide if a cliff is in front of the wheelchair. Vehicle tests were carried out by applying the algorithm to the electric wheelchair. Additionally, detailed functions of obstacle detection, such as providing avoidance direction and detecting the existence of cliffs, were demonstrated.

A Study on the Temperature Distribution at the Surface of Diesel Particulate Filter and Partitioned Electric Heater according to the Conditions of Heating and Flow using an Infrared Temperature Camera (적외선 온도 카메라를 이용한 분할형 전기히터 가열 및 유동 조건에 따른 전기히터와 매연필터 표면에서의 온도 분포에 관한 연구)

  • Lee, Choong-Hoon;Paik, Sung-Chon
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.7-14
    • /
    • 2008
  • The temperature distribution in a surface of diesel particulate filter(DPF) was measured using an infrared temperature camera. In order to regenerate the DPF, five partitioned electric heaters were used for heating the ceramic filter. The five partitioned heaters were switched on/off with some time interval one the other. The surface temperature distribution in the ceramic filter and electric heaters were measured with varying both the electrical power supply to the heaters and the mass flow rate of the air supply from a blower. The higher mass flow rate in the DPF system enhanced the uniformity in the surface temperature distribution of the ceramic filter due to effective convection heat transfer. The flow in the monolith ceramic structure of the DPF move mainly in the axial direction, which could be identified from the surface temperature of the ceramic filter.

A Study on Combustion Patterns of Flammable Liquids by Contained Oil Test (담유 실험에 의한 인화성 액체의 연소 패턴 해석에 관한 연구)

  • Joe, Hi-Su;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.28 no.4
    • /
    • pp.14-20
    • /
    • 2014
  • The purpose of this study is to analyze combustion patterns by filling a specific container with a flammable liquid and performing combustion tests in a divided space. The container used for the test is made of plastic, 20 mm in depth and 150 mm in width. After the liquid was ignited, its combustion process was photographed using a digital camera and video camera. It was found that in the case of benzene, the flame reached its peak at the fastest speed about 60 s while in the case of alcohol, the flame reached its peak at the lowest speed about 360 s, which is approximately six times slower than the benzene. In most cases, when the flame reached its peak, smoke generated was dark as the plastic container and flammable liquid were combusted simultaneously. After completion of the combustion, it was possible to sample oil vapor from all flammable liquids excluding soybean oil as a result of the examination of oil vapor using a crime investigation tube. That is, it can be seen that there is significant difference in flame propagation speed, pattern, etc., depending on the combustible substances.

Structural Safety Evaluation of Electro-Optical Camera Controller Box of CAS500 Satellite under Launch Environments (발사환경에 대한 차세대 중형위성 전자광학 카메라 제어용 전장품의 구조건전성 평가)

  • Lee, Myeong-Jae;Kim, Hyun-Soo;Lee, Duk-Kyu;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.98-105
    • /
    • 2018
  • The satellite is exposed to various launch environments such as random vibrations and shock. Accordingly, structural design of electronic equipment mounted on satellite must meet reliability requirements at the box level. In addition, it is essential to secure the reliability of the solder joint applied to electronic equipment. In this paper, we performed a modal and quasi-static analysis for the purpose of satisfaction of the design requirements of the CCB (Camera Controller Box) present on the 500 kg-class compact advanced satellite (CAS500). In addition, structural safety of electronic components was verified by the Steinberg's method and random equivalent static analysis.

Real-Time Image Processing System for PDP Pattern Inspection with Line Scan Camera (PDP 패턴검사를 위한 실시간 영상처리시스템 개발)

  • Cho Seog-Bin;Baek Gyeoung-Hun;Yi Un-Kun;Nam Ki-Gon;Baek Kwang-Ryul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.3 s.303
    • /
    • pp.17-24
    • /
    • 2005
  • Various defects are found in PDP manufacturing process. Detecting these defects early and reprocessing them is an important factor that reduces the cost of production. In this paper, the image processing system for the PDP pattern inspection is designed and implemented using the high performance and accuracy CCD line scan camera. For the preprocessing of the high speed line image data, the Image Processing Part (IPP) is designed and implemented using high performance DSP, FIFO and FPGA. Also, the Data Management and System Control Part (DMSCP) are implemented using ARM processor to control many IPP and cameras and to provide remote users with processed data. For evaluating implemented system, experiment environment which has an area camera for reviewing and moving shelf is made. Experimental results showed that proposed system was quite successful.

Ratio of Hammer Energy and Dynamic Efficiency of Standard Penetration Test (표준관입 시험 해머의 에너지비와 동적효율)

  • Lee, Chang-Ho;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.5-12
    • /
    • 2005
  • SPT hammer energy and its delivery are hon to influence the N value. The SPT hammer energy is classified into theoretical energy, velocity energy, rod energy and dynamic efficiency. In this study, the rod energy and the velocity energy are measured directly by PDA and Digital Line-Scan Camera which are most widely used type of SPT apparatus in Korea. The Dynamic efficiency is calculated through measured data. As the results of this study, the averages of rod energy ratio of donut, safety and automatic hammer are measured at 49.57, 61.60, and at $87.04\%$ by FV method. The averages of hammer velocity of donut, safety and automatic hammer are measured at $3.177{\pm}0.872$, $3.385{\pm}0.681$, and at $3.651{\pm}0.550$ m/s by Digital Line-Scan Camera, with the dynamic efficiencies at 0.732, 0.801, and 0.973 respectively.

Low-noise reconstruction method for coded-aperture gamma camera based on multi-layer perceptron

  • Zhang, Rui;Tang, Xiaobin;Gong, Pin;Wang, Peng;Zhou, Cheng;Zhu, Xiaoxiang;Liang, Dajian;Wang, Zeyu
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2250-2261
    • /
    • 2020
  • Accurate localization of radioactive materials is crucial in homeland security and radiological emergencies. Coded-aperture gamma camera is an interesting solution for such applications and can be developed into portable real-time imaging devices. However, traditional reconstruction methods cannot effectively deal with signal-independent noise, thereby hindering low-noise real-time imaging. In this study, a novel reconstruction method with excellent noise-suppression capability based on a multi-layer perceptron (MLP) is proposed. A coded-aperture gamma camera based on pixel detector and coded-aperture mask was constructed, and the process of radioactive source imaging was simulated. Results showed that the MLP method performs better in noise suppression than the traditional correlation analysis method. When the Co-57 source with an activity of 1 MBq was at 289 different positions within the field of view which correspond to 289 different pixels in the reconstructed image, the average contrast-to-noise ratio (CNR) obtained by the MLP method was 21.82, whereas that obtained by the correlation analysis method was 5.85. The variance in CNR of the MLP method is larger than that of correlation analysis, which means the MLP method has some instability in certain conditions.