• 제목/요약/키워드: Safety Secure

검색결과 1,413건 처리시간 0.031초

자동차 데이터 공유의 장애/성공 요인 및 기술개발 과제 (Bottleneck and Success Factors of Vehicle Data Sharing and Suggestions for Technology Development)

  • 김주성
    • 전자통신동향분석
    • /
    • 제37권4호
    • /
    • pp.11-18
    • /
    • 2022
  • Sharing vehicle data among the companies within a car ecosystem can improve driving experience, increase driver comfort, contribute to social goals such as improving road safety and lowering fuel consumption. Furthermore, by participating in the ecosystem, companies can secure long-term and sustainable new revenue-generating opportunities. In this paper, we will examine the bottleneck and success factors of data sharing, as well as the technological solutions that urgently require development for car data sharing.

Compliant Ultrasound Proximity Sensor for the Safe Operation of Human Friendly Robots Integrated with Tactile Sensing Capability

  • Cho, Il-Joo;Lee, Hyung-Kew;Chang, Sun-Il;Yoon, Euisik
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.310-316
    • /
    • 2017
  • The robot proximity and tactile sensors can be categorized into two groups: grip sensors and safety sensors. They have different performance requirements. The safety sensor should have long proximity range and fast response in order to secure enough response time before colliding with ambient objects. As for the tactile sensing function, the safety sensor need to be fast and compliant to mitigate the impact from a collision. In order to meet these requirements, we proposed and demonstrated a compliant integrated safety sensor suitable to human-friendly robots. An ultrasonic proximity sensor and a piezoelectric tactile sensor made of PVDF films have been integrated in a compliant PDMS structure. The implemented sensor demonstrated the maximum proximity range of 35 cm. The directional tolerance for 30 cm detection range was about ${\pm}15^{\circ}$ from the normal axis. The integrated PVDF tactile sensor was able to detect various impacts of up to 20 N in a controlled experimental setup.

ISO 26262 제품개발 프로세스와 연계된 DFSS 로드-맵의 개발 (Development of a DFSS Road-map Associated with the ISO 26262 Product Development Process)

  • 홍성훈;권혁무;김동준;이민구
    • 산업공학
    • /
    • 제25권4호
    • /
    • pp.393-404
    • /
    • 2012
  • Increasing safety requirements of automobile are asking companies to find out solutions, based on the ISO 26262 which is a functional safety standard. ISO 26262 is an adaptation of the IEC 61508 for automotive electric/electronic systems. ISO 26262 provides a V model for ECU (Electronic Control Unit) development process to secure safety against vehicle. It well describes the requirements, necessary works and their resulting products for each development phase. However, it is difficult to apply to product development for achieving functional safety in the electric/electronic systems of an automobile because it lacks explanation on the working steps to follow and the methodologies and tools to be used in each step. In this paper, we introduce the outline of the ISO 26262 product development process and present a DFSS (Design For Six Sigma) road-map based on the ISO 26262 product development process as a way to operate efficiently the ISO 26262 product development process. The DFSS road-map consists of five phases: Define, Measure, Analyze, Design, and Verify. The detailed activities, tools, inputs, and work products are given for each phase.

직접 적응식 퍼지 제어기를 이용한 전자식 후륜 제동압력 감압 시스템 안전성에 관한 연구 (A Study on the Safety of the Electronic Rear Brake Pressure Reducing System using a Direct Adaptive Fuzzy Controller)

  • 김남헌;김훈모
    • 한국자동차공학회논문집
    • /
    • 제9권4호
    • /
    • pp.157-165
    • /
    • 2001
  • In the brake systems, it is important to reduce the rear brake pressure in order to secure the safety of the vehicle in braking. So, there was some research that reduced and controlled the rear brake pressure exactly like a LSPV and a ELSPV. However, the previous research has some weaknesses: the LSPV is a mechanical system and its brake efficiency is lower than the efficiency of ELSPV, But, the cost of ELSPV is very higher so its application to the vehicle is very difficult. Additionally, when a fail appears in the circuit which controls the valves, the fail results in some wrong operation of the valves. But, the previous researchers didn't take the effect of fail into account. Hence, the efficiency of them is low and the safety of the vehicle is not confirmed. So, in this paper we develop a new economical pressure modulator that exactly controls brake pressure and confirms the safety of the vehicle in any case using a direct adaptive fuzzy controller.

  • PDF

INTEGRITY ANALYSIS OF AN UPPER GUIDE STRUCTURE FLANGE

  • LEE, KI-HYOUNG;KANG, SUNG-SIK;JHUNG, MYUNG JO
    • Nuclear Engineering and Technology
    • /
    • 제47권6호
    • /
    • pp.766-775
    • /
    • 2015
  • The integrity assessment of reactor vessel internals should be conducted in the design process to secure the safety of nuclear power plants. Various loads such as self-weight, seismic load, flow-induced load, and preload are applied to the internals. Therefore, the American Society of Mechanical Engineers (ASME) Code, Section III, defines the stress limit for reactor vessel internals. The present study focused on structural response analyses of the upper guide structure upper flange. The distributions of the stress intensity in the flange body were analyzed under various design load cases during normal operation. The allowable stress intensities along the expected sections of stress concentration were derived from the results of the finite element analysis for evaluating the structural integrity of the flange design. Furthermore, seismic analyses of the upper flange were performed to identify dynamic behavior with respect to the seismic and impact input. The mode superposition and full transient methods were used to perform time-history analyses, and the displacement at the lower end of the flange was obtained. The effect of the damping ratio on the response of the flange was also evaluated, and the acceleration was obtained. The results of elastic and seismic analyses in this study will be used as basic information to judge whether a flange design meets the acceptance criteria.

콘크리트용 표준물질(Standard Reference Materials)개발의 최적배합비율 결정을 위한 기초연구 (A Fundamental Study on the Determination of Optimal Mixing Ratio for Development of Standard Reference Materials for Concrete)

  • 이동규;최명성
    • 한국안전학회지
    • /
    • 제34권5호
    • /
    • pp.111-118
    • /
    • 2019
  • Recently, a variety of special concrete structures have been designed in domestic and overseas construction markets and more advanced construction technology is required. Therefore, it is necessary to secure quantitative construction technology. For this purpose, it is essential to develop a standard reference material having a constant flow performance and quality to evaluate quantitative performance. On the other hand, the flowability of the concrete is greatly influenced by the flowability of the cement paste. Also, in consideration of design strength and workability, mix design is carried out at various mixing ratios according to the purpose of the site. Therefore, in this study, based on the derived components of standard reference materials for cement paste, we suggested mixing ratio of standard reference materials that can uniformly simulate the flow characteristics of cement paste according to W/C. As a result, it was found that the yield stress was determined by the ratio of water and glycerol but plastic viscosity was controled by limestone content. Finally, the ratio of standard reference materials to simulate the rheological range of cement paste by W/C was suggested.

휠체어 탑승 개조버스의 구조안전성능 연구 (Research of Structural Safety Tolerance for Wheelchair Bus Rollover Characteristics)

  • 신재호;한경희;김경진;용기중;강병도
    • 자동차안전학회지
    • /
    • 제10권4호
    • /
    • pp.54-59
    • /
    • 2018
  • While the advanced trffic environment systems are developed recently, the traffic systems for transportation vulnerable are still under development and their social life are limited as well. In order to the secure their mobility rights, it had been required to set up the particular system for the traffic welfare. One of the significant items is the express bus operation for wheelchair users. Thus, the research of development and operation for express buses with wheelchair users was funded by the Korean government. Before the express bus development for wheelchair users based on the current bus model, this study set up the evaluation method for the bus rollover characteristics to ensure occupant safety using the finite element method. The partial bus model was developed corresponding to the full bus model response under rollover event and the evaluation method based on two model (full bus model and partial bus model) responses is planned to apply the model development of express bus modification for wheelchair users.

A New Approach to Selection of Inspection Items using Risk Insight of Probabilistic Safety Assessment for Nuclear Power Plants

  • Park, Younwon;Kim, Hyungjin;Lim, Jihan;Choi, Seongsoo
    • 한국압력기기공학회 논문집
    • /
    • 제14권2호
    • /
    • pp.49-58
    • /
    • 2018
  • The regulatory periodic inspection program (PSI) conducted at every overhaul period is the most important process for confirming the safety of nuclear power plants. The PSI for operating nuclear power plants in Korea mainly consist of component level performance check that had been developed based on deterministic approach putting the same degree of importance to all the inspection items. This inspection methodology is likely to be effective for preoperational inspection. However, once the plant is put into service, the PSI must be focused on whether to minimize the risk of accident using defense-in-depth concept and risk insight. The incorporation of defense-in-depth concept and risk insight into the deterministic based safety inspection has not been well studied so far. In this study, two track approaches are proposed to make sure that core damage be avoided: one is to secure success path and the other to block the failure path in a specific event tree of PSA. The investigation shows how to select safety important components and how to set up inspection group to ensure that core damage would not occur for a given initiating event, which results in strengthening defense-in-depth level 3.

On the Performance Management System to Analyse the Effectiveness of Type Approval System for Railway Vehicle

  • Lee, Young Hoon;Lee, Jee Ha;Park, Chan Kyung;Kim, Young Min
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권1호
    • /
    • pp.1-10
    • /
    • 2021
  • The type approval system for railway vehicle has been in effect since 2016 in order to establish a regular safety management system to secure railway safety and enhance the technological competitiveness of the railway industry, abolished the conventional performance test system through the reform of the Railroad Safety Act in 2012. Until now, there has been appreciated it has been making significant contributions to railway safety and industry of operation and manufacturing companies, taking their place in accordance with the implementation of the system. But there has been no case of quantitative analysis on the effectiveness of the actual system. In this study, in order to examine the full-scale performance of the approval system and quantitatively analyze effectiveness, we identified and defined the relationships with the major elements of the type approval system based on system thinking principle and determined the calculated outcomes to relevant stakeholders. A method of establishing a type approval performance management system that can be grasped, utilized, and adjusted from a point of various stakeholders' views was proposed. This is expected to be more helpful in the implementation of the system, such as improving and applying quantitative effects to analysis by closely reviewing the effects and influencing factors of the type approval system based on the data accumulated through continuous performance management and reflecting to system improvement.

Systems to prevent the load resistance loss of pallet racks exposed to cyclic external force

  • Heo, Gwanghee;Kim, Chunggil;Baek, Eunrim;Jeon, Seunggon
    • Structural Engineering and Mechanics
    • /
    • 제83권6호
    • /
    • pp.745-756
    • /
    • 2022
  • This study aims to determine the cause of the load resistance loss in storage racks that can be attributed to external forces such as earthquakes and to improve safety by developing reinforcement systems that can prevent load resistance loss. To this end, a static cyclic loading test was performed on pallet racks commonly used in logistics warehouses. The test results indicated that a pallet rack exposed to an external force loses more than 50% of its load resistance owing to the damage caused to column-beam joints. Three reinforcement systems were developed for preventing load resistance loss in storage racks exposed to an external force and for performing differentiated target functions: column reinforcement device, seismic damper, and viscoelastic damper. Shake table testing was performed to evaluate the earthquake response and verify the performance of these reinforcement systems. The results confirmed that, the maximum displacement, which causes the loss of load resistance and the permanent deformation of racks under external force, is reduced using the developed reinforcement devices. Thus, the appropriate selection of the developed reinforcement devices by users can help secure the safety of the storage racks.