• Title/Summary/Keyword: Safety Performance

Search Result 7,343, Processing Time 0.043 seconds

MLCNN-COV: A multilabel convolutional neural network-based framework to identify negative COVID medicine responses from the chemical three-dimensional conformer

  • Pranab Das;Dilwar Hussain Mazumder
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.290-306
    • /
    • 2024
  • To treat the novel COronaVIrus Disease (COVID), comparatively fewer medicines have been approved. Due to the global pandemic status of COVID, several medicines are being developed to treat patients. The modern COVID medicines development process has various challenges, including predicting and detecting hazardous COVID medicine responses. Moreover, correctly predicting harmful COVID medicine reactions is essential for health safety. Significant developments in computational models in medicine development can make it possible to identify adverse COVID medicine reactions. Since the beginning of the COVID pandemic, there has been significant demand for developing COVID medicines. Therefore, this paper presents the transferlearning methodology and a multilabel convolutional neural network for COVID (MLCNN-COV) medicines development model to identify negative responses of COVID medicines. For analysis, a framework is proposed with five multilabel transfer-learning models, namely, MobileNetv2, ResNet50, VGG19, DenseNet201, and Inceptionv3, and an MLCNN-COV model is designed with an image augmentation (IA) technique and validated through experiments on the image of three-dimensional chemical conformer of 17 number of COVID medicines. The RGB color channel is utilized to represent the feature of the image, and image features are extracted by employing the Convolution2D and MaxPooling2D layer. The findings of the current MLCNN-COV are promising, and it can identify individual adverse reactions of medicines, with the accuracy ranging from 88.24% to 100%, which outperformed the transfer-learning model's performance. It shows that three-dimensional conformers adequately identify negative COVID medicine responses.

Application of Mask R-CNN Algorithm to Detect Cracks in Concrete Structure (콘크리트 구조체 균열 탐지에 대한 Mask R-CNN 알고리즘 적용성 평가)

  • Bae, Byongkyu;Choi, Yongjin;Yun, Kangho;Ahn, Jaehun
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.3
    • /
    • pp.33-39
    • /
    • 2024
  • Inspecting cracks to determine a structure's condition is crucial for accurate safety diagnosis. However, visual crack inspection methods can be subjective and are dependent on field conditions, thereby resulting in low reliability. To address this issue, this study automates the detection of concrete cracks in image data using ResNet, FPN, and the Mask R-CNN components as the backbone, neck, and head of a convolutional neural network. The performance of the proposed model is analyzed using the intersection over the union (IoU). The experimental dataset contained 1,203 images divided into training (70%), validation (20%), and testing (10%) sets. The model achieved an IoU value of 95.83% for testing, and there were no cases where the crack was not detected. These findings demonstrate that the proposed model realized highly accurate detection of concrete cracks in image data.

A Study on Machine Learning-Based Estimation of Roadkill Incidents and Exploration of Influencing Factors (기계학습 기반의 로드킬 발생 예측과 영향 요인 탐색에 대한 연구)

  • Sojin Heo;Jeeyoung Kim
    • Journal of Environmental Impact Assessment
    • /
    • v.33 no.2
    • /
    • pp.74-83
    • /
    • 2024
  • This study aims to estimate roadkill occurrences and investigate influential factors in Chungcheongnam-do, contributing to the establishment of roadkill prevention measures. By comprehensively considering weather, road, and environmental information, machine learning was utilized to estimate roadkill incidents and analyze the importance of each variable, deriving primary influencing factors. The Gradient Boosting Machine (GBM) exhibited the best performance, achieving an accuracy of 92.0%, a recall of 84.6%, an F1-score of 89.2%, and an AUC of 0.907. The key factors affecting roadkill included average local atmospheric pressure (hPa), average ground temperature (℃), month, average dew point temperature (℃), presence of median barriers, and average wind speed (m/s). These findings are anticipated to contribute to roadkill prevention strategies and enhance traffic safety, playing a crucial role in maintaining a balance between ecosystems and road development.

Time Series Analysis for Predicting Deformation of Earth Retaining Walls (시계열 분석을 이용한 흙막이 벽체 변형 예측)

  • Seo, Seunghwan;Chung, Moonkyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.2
    • /
    • pp.65-79
    • /
    • 2024
  • This study employs traditional statistical auto-regressive integrated moving average (ARIMA) and deep learning-based long short-term memory (LSTM) models to predict the deformation of earth retaining walls using inclinometer data from excavation sites. It compares the predictive capabilities of both models. The ARIMA model excels in analyzing linear patterns as time progresses, while the LSTM model is adept at handling complex nonlinear patterns and long-term dependencies in the data. This research includes preprocessing of inclinometer measurement data, performance evaluation across various data lengths and input conditions, and demonstrates that the LSTM model provides statistically significant improvements in prediction accuracy over the ARIMA model. The findings suggest that LSTM models can effectively assess the stability of retaining walls at excavation sites. Additionally, this study is expected to contribute to the development of safety monitoring systems at excavation sites and the advancement of time series prediction models.

Task Allocation and Path Planning for Multiple Unmanned Vehicles on Grid Maps (격자 지도 기반의 다수 무인 이동체 임무 할당 및 경로 계획)

  • Byeong-Min Jeong;Dae-Sung Jang;Nam-Eung Hwang;Joon-Won Kim;Han-Lim Choi
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.2
    • /
    • pp.56-63
    • /
    • 2024
  • As the safety of unmanned vehicles continues to improve, their usage in urban environments, which are full of obstacles such as buildings, is expected to increase. When numerous unmanned vehicles are operated in such environments, an algorithm that takes into account mutual collision avoidance, as well as static and dynamic obstacle avoidance, is necessary. In this paper, we propose an algorithm that handles task assignment and path planning. To efficiently plan paths, we construct a grid-based map and derive the paths from it. To enable quick re-planning in dynamic environments, we focus on reducing computational time. Through simulation, we explain obstacle avoidance and mutual collision avoidance in small-scale problems and confirm their performance by observing the entire mission completion time (Makespan) in large-scale problems.

Development of Design Blast Load Model according to Probabilistic Explosion Risk in Industrial Facilities (플랜트 시설물의 확률론적 폭발 위험도에 따른 설계폭발하중 모델 개발)

  • Seung-Hoon Lee;Bo-Young Choi;Han-Soo Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • This paper employs stochastic processing techniques to analyze explosion risks in plant facilities based on explosion return periods. Release probability is calculated using data from the Health and Safety Executive (HSE), along with annual leakage frequency per plant provided by DNV. Ignition probability, derived from various researchers' findings, is then considered to calculate the explosion return period based on the release quantity. The explosion risk is assessed by examining the volume, radius, and blast load of the vapor cloud, taking into account the calculated explosion return period. The reference distance for the design blast load model is determined by comparing and analyzing the vapor cloud radius according to the return period, historical vapor cloud explosion cases, and blast-resistant design guidelines. Utilizing the multi-energy method, the blast load range corresponding to the explosion return period is presented. The proposed return period serves as a standard for the design blast load model, established through a comparative analysis of vapor cloud explosion cases and blast-resistant design guidelines. The outcomes of this study contribute to the development of a performance-based blast-resistant design framework for plant facilities.

Damage Detection and Damage Quantification of Temporary works Equipment based on Explainable Artificial Intelligence (XAI)

  • Cheolhee Lee;Taehoe Koo;Namwook Park;Nakhoon Lim
    • Journal of Internet Computing and Services
    • /
    • v.25 no.2
    • /
    • pp.11-19
    • /
    • 2024
  • This paper was studied abouta technology for detecting damage to temporary works equipment used in construction sites with explainable artificial intelligence (XAI). Temporary works equipment is mostly composed of steel or aluminum, and it is reused several times due to the characters of the materials in temporary works equipment. However, it sometimes causes accidents at construction sites by using low or decreased quality of temporary works equipment because the regulation and restriction of reuse in them is not strict. Currently, safety rules such as related government laws, standards, and regulations for quality control of temporary works equipment have not been established. Additionally, the inspection results were often different according to the inspector's level of training. To overcome these limitations, a method based with AI and image processing technology was developed. In addition, it was devised by applying explainableartificial intelligence (XAI) technology so that the inspector makes more exact decision with resultsin damage detect with image analysis by the XAI which is a developed AI model for analysis of temporary works equipment. In the experiments, temporary works equipment was photographed with a 4k-quality camera, and the learned artificial intelligence model was trained with 610 labelingdata, and the accuracy was tested by analyzing the image recording data of temporary works equipment. As a result, the accuracy of damage detect by the XAI was 95.0% for the training dataset, 92.0% for the validation dataset, and 90.0% for the test dataset. This was shown aboutthe reliability of the performance of the developed artificial intelligence. It was verified for usability of explainable artificial intelligence to detect damage in temporary works equipment by the experiments. However, to improve the level of commercial software, the XAI need to be trained more by real data set and the ability to detect damage has to be kept or increased when the real data set is applied.

Analysis of the thermal-mechanical behavior of SFR fuel pins during fast unprotected transient overpower accidents using the GERMINAL fuel performance code

  • Vincent Dupont;Victor Blanc;Thierry Beck;Marc Lainet;Pierre Sciora
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.973-979
    • /
    • 2024
  • In the framework of the Generation IV research and development project, in which the French Commission of Alternative and Atomic Energies (CEA) is involved, a main objective for the design of Sodium-cooled Fast Reactor (SFR) is to meet the safety goals for severe accidents. Among the severe ones, the Unprotected Transient OverPower (UTOP) accidents can lead very quickly to a global melting of the core. UTOP accidents can be considered either as slow during a Control Rod Withdrawal (CRW) or as fast. The paper focuses on fast UTOP accidents, which occur in a few milliseconds, and three different scenarios are considered: rupture of the core support plate, uncontrolled passage of a gas bubble inside the core and core mechanical distortion such as a core flowering/compaction during an earthquake. Several levels and rates of reactivity insertions are also considered and the thermal-mechanical behavior of an ASTRID fuel pin from the ASTRID CFV core is simulated with the GERMINAL code. Two types of fuel pins are simulated, inner and outer core pins, and three different burn-up are considered. Moreover, the feedback from the CABRI programs on these type of transients is used in order to evaluate the failure mechanism in terms of kinetics of energy injection and fuel melting. The CABRI experiments complete the analysis made with GERMINAL calculations and have shown that three dominant mechanisms can be considered as responsible for pin failure or onset of pin degradation during ULOF/UTOP accident: molten cavity pressure loading, fuel-cladding mechanical interaction (FCMI) and fuel break-up. The study is one of the first step in fast UTOP accidents modelling with GERMINAL and it has shown that the code can already succeed in modelling these type of scenarios up to the sodium boiling point. The modeling of the radial propagation of the melting front, validated by comparison with CABRI tests, is already very efficient.

Radiation attenuation and elemental composition of locally available ceramic tiles as potential radiation shielding materials for diagnostic X-ray rooms

  • Mohd Aizuddin Zakaria;Mohammad Khairul Azhar Abdul Razab;Mohd Zulfadli Adenan;Muhammad Zabidi Ahmad;Suffian Mohamad Tajudin;Damilola Oluwafemi Samson;Mohd Zahri Abdul Aziz
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.301-308
    • /
    • 2024
  • Ceramic materials are being explored as alternatives to toxic lead sheets for radiation shielding due to their favorable properties like durability, thermal stability, and aesthetic appeal. However, crafting effective ceramics for radiation shielding entails complex processes, raising production costs. To investigate local viability, this study evaluated Malaysian ceramic tiles for shielding in diagnostic X-ray rooms. Different ceramics in terms of density and thickness were selected from local manufacturers. Energy Dispersive X-ray Fluorescence (EDXRF) and X-ray Fluorescence (XRF) characterized ceramic compositions, while Monte Carlo Particle and Heavy Ion Transport code System (MC PHITS) simulations determined Linear Attenuation Coefficient (LAC), Half-value Layer (HVL), Mass Attenuation Coefficient (MAC), and Mean Free Path (MFP) within the 40-150 kV energy range. Comparative analysis between MC PHITS simulations and real setups was conducted. The C3-S9 ceramic sample, known for homogeneous full-color structure, showcased superior shielding attributes, attributed to its high density and iron content. Notably, energy levels considerably impacted radiation penetration. Overall, C3-S9 demonstrated strong shielding performance, underlining Malaysia's potential ceramic tile resources for X-ray room radiation shielding.

Investigation on the responses of offshore monopile in marine soft clay under cyclic lateral load

  • Fen Li;Xinyue Zhu;Zhiyuan Zhu;Jichao Lei;Dan Hu
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.383-393
    • /
    • 2024
  • Monopile foundations of offshore wind turbines embedded in soft clay are subjected to the long-term cyclic lateral loads induced by winds, currents, and waves, the vibration of monopile leads to the accumulation of pore pressure and cyclic strains in the soil in its vicinity, which poses a threat to the safety operation of monopile. The researchers mainly focused on the hysteretic stress-strain relationship of soft clay and kinds of stiffness degradation models have been adopted, which may consume considerable computing resources and is not applicable for the long-term bearing performance analysis of monopile. In this study, a modified cyclic stiffness degradation model considering the effect of plastic strain and pore pressure change has been proposed and validated by comparing with the triaxial test results. Subsequently, the effects of cyclic load ratio, pile aspect ratio, number of load cycles, and length to embedded depth ratio on the accumulated rotation angle and pore pressure are presented. The results indicate the number of load cycles can significantly affect the accumulated rotation angle of monopile, whereas the accumulated pore pressure distribution along the pile merely changes with pile diameter, embedded length, and the number of load cycles, the stiffness of monopile can be significantly weakened by decreasing the embedded depth ratio L/H of monopile. The stiffness degradation of soil is more significant in the passive earth pressure zone, in which soil liquefaction is likely to occur. Furthermore, the suitability of the "accumulated rotation angle" and "accumulated pore pressure" design criteria for determining the required cyclic load ratio are discussed.