• 제목/요약/키워드: Safety Inspections

검색결과 239건 처리시간 0.022초

Descriptive Study of Occupational Accidents and their Causes among Electricity Distribution Company Workers at an Eight-year Period in Iran

  • Rahmani, Abdolrasoul;Khadem, Monireh;Madreseh, Elham;Aghaei, Habib-Allah;Raei, Mehdi;Karchani, Mohsen
    • Safety and Health at Work
    • /
    • 제4권3호
    • /
    • pp.160-165
    • /
    • 2013
  • Background: Occupational accidents are unplanned events that cause damage. The socio-economic impacts and human costs of accidents are tremendous around the world. Many fatalities happen every year in workplaces such as electricity distribution companies. Some electrical injuries are electrocution, electric shock, and burns. This study was conducted in an electricity distribution company (with rotational 12-hour shift work) in Iran during an 8-year period to survey descriptive factors of injuries. Methods: Variables collected included accident time, age of injured worker, employment type, work experience, injury cause, educational background, and other information about accidents. Results: Results indicated that most of the accidents occurred in summer, and 51.3% were during shift work. Worker negligence (malpractice) was the cause of 75% of deaths. Type of employment had a significant relationship with type of injuries (p < 0.05). Most injuries were electrical burns. Conclusion: High rate of accidents in summer may be due to the warm weather or insufficient professional skills in seasonal workers. Shift workers are at risk of sleep complaints leading to a high rate of work injuries. Acquiring knowledge about safety was related to job experiences. Temporary workers have no chance to work all year like permanent workers, therefore impressive experiences may be less in them. Because the lack of protective equipment and negligence are main causes of accidents, periodical inspections in workshops are necessary.

A Study on Development of Portable Concrete Crack Measurement Device Using Image Processing Technique and Laser Sensors (이미지 처리기법 및 레이저 센서를 이용한 휴대용 콘크리트 균열 측정 장치 개발에 관한 연구)

  • Seo, Seunghwan;Ohn, Syng-Yup;Kim, Dong-Hyun;Kwak, Kiseok;Chung, Moonkyung
    • Journal of the Korean Geosynthetics Society
    • /
    • 제19권4호
    • /
    • pp.41-50
    • /
    • 2020
  • Since cracks in concrete structures expedite corrosion of reinforced concrete over a long period of time, regular on-site inspections are essential to ensure structural usability and prevent degradation. Most of the safety inspections of facilities rely on visual inspection with naked eye, so cost and time consuming are severe, and the reliability of results differs depending on the inspector. In this study, a portable measuring device that can be used for safety diagnosis and maintenance was developed as a device that measures the width and length of concrete cracks through image analysis of cracks photographed with a camera. This device captures the cracks found within a close distance (3 m), and accurately calculates the unit pixel size by laser distance measurement, and automatically calculates the crack length and width with the image processing algorithm developed in this study. In measurement results using the crack image applied to the experiment, the measurement of the length of a 0.3 mm crack within a distance of 3 m was possible with a range of about 10% error. The crack width showed a tendency to be overestimated by detecting surrounding pixels due to vibration and blurring effect during the binarization process, but it could be effectively corrected by applying the crack width reduction function.

A Study on the Improvement of Member Evaluation Method in the Condition Evaluation of Reinforced Concrete Buildings (철근콘크리트 건축물의 상태평가 중 부재평가방법 개선에 관한 연구)

  • Woo, Hye-Sung;Yi, Waon-Ho;Hwang, Kyung-Ran;Lee, Kwan-Hyeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제25권3호
    • /
    • pp.85-91
    • /
    • 2021
  • Type 1 and type 2 buildings must regularly conduct precise safety inspections and precise safety diagnosis for the safety and maintenance of facilities, and the safety grade of the building is determined according to the results of the implementation. In addition, the cycle of inspection and diagnosis is determined according to the safety grade of the building. In order to determine the safety grade of the building, a precise safety inspection conducts condition evaluation, and a precise safety diagnosis conducts condition evaluation and safety evaluation. Therefore, since the inspection and diagnosis cycle is determined according to the safety grade of the building, the condition evaluation and safety evaluation must be precise. However, in the case of member unit evaluation, which is the first step in evaluating the current condition, the evaluation grade is determined by using the representative value of the measurement result, and this may result in an error in the evaluation grade. To solve this problem, this study analyzed evaluation criteria for each evaluation item and presented evaluation criteria using inequalities to respond to measurement results and evaluation scores. In addition, we present a functional formula that can reflect performance scores for each evaluation item.

A Study on Process Safety System Analysis for Application Process Safety Performance Indicators (공정안전성과지표 적용을 위한 공정안전시스템 분석방안 연구)

  • Ko, Byung Seok;Lim, Dong-Hui;Kim, Min-Seop;Seol, Ji Woo;Yoo, Byung Tae;Ko, Jae-Wook
    • Journal of the Korean Institute of Gas
    • /
    • 제26권2호
    • /
    • pp.27-38
    • /
    • 2022
  • In developed countries, the number of accidents has significantly decreased with the introduction of the process safety management system, but it has a regulatory nature and it is difficult to show the actual situation of workplace safety management. Many organizations recommend the use of process safety performance indicators to comprehensively monitor process safety status. In this study, for the application of process safety performance indicators, the related guidelines were compared and analyzed, and the method of using the process safety system of the workplace as an indicator was reviewed. In literature indicators, compliance with procedures is mainly checked, whereas in system-based indicators, procedures or inspections for a specific purpose of the safety system can be clearly identified, and the operation status can be measured and monitored. It can be seen that this characteristic is more advantageous in terms of the clarity of the supplements derived in operating safety management activities. Using this, it is possible to effectively show the level of safety management in the workplace.

Climate Change Impacts and Adaptation on Hydrological Safety Perspectives of Existing Dams (기후변화에 따른 댐의 수문학적 안전성 평가 및 적응방안 고찰)

  • Park, Jiyeon;Jung, Il Won;Kwon, Ji Hye;Kim, Wonsul
    • Journal of Wetlands Research
    • /
    • 제21권spc호
    • /
    • pp.149-156
    • /
    • 2019
  • Assessing the hydrological safety of existing dams against climate change and providing appropriate adaptation measures are important in terms of sustainable water supply and management. Korean major dams ensure their safety through periodic inspections and maintenance according to 'Special Act on the safety control and maintenance of establishments'. Especially when performing a full safety examination, principal engineer must assess the hydrological safety and prepare for potential risks. This study employed future probable maximum precipitation (PMP) estimated using outputs of regional climate models based on RCP4.5 and RCP8.5 greenhouse-gas emission scenarios to assess climate change impact on existing dam's future hydrological safety. The analysis period was selected from 2011 to 2040, from 2041 to 2070, and from 2071 to 2100. Evaluating the potential risk based on the future probable maximum flood (PMF) for four major dams (A, B, C, I) showed that climate change could induce increasing the overflow risk on three dams (A, B, I), although there are small differences depending on the RCP scenarios and the analysis periods. Our results suggested that dam managers should consider both non-structural measures and structural measures to adapt to the expected climate change.

A Study on Improvement of Maintenance Strategy based on Analysis of Bridge Safety Grade (교량 안전등급 분석을 통한 유지관리전략 개선 방안 연구)

  • Hwang, Yoon-Koog;Sun, Jong-Wan;Choi, Young-Min;Park, Kyung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제22권3호
    • /
    • pp.36-43
    • /
    • 2021
  • Because bridges are major national infrastructure, regular safety inspections or diagnoses for bridges have been conducted in accordance with the "Special Act on the Safety and Maintenance of Facilities." Accordingly, the condition and safety assessments of the bridge are conducted to derive the condition and safety rating, respectively. A lower result is determined to be the safety grade of the bridge. In this study, the relationship between the condition rating and safety rating, which are the core of the bridge safety grade, was analyzed by the representative superstructure types of bridges, such as RC slab, PSCI girder, Steel box girder, Rhamen, and Preflex girder, to identify the correlation status and range between each rating. A reasonable improvement direction for establishing existing maintenance policies was suggested by proposing an alternative plan to change the proper implementation cycle of the inspection and diagnosis of bridge superstructure types. As a result of the research, it is necessary to adjust the inspection and diagnosis cycle according to the superstructure type and safety grade. In addition, maintenance policies need to be improved through detailed research on more diverse bridge types in the future.

Application Range of "Temporary Alteration" in the Article 10 of Ship Safety Act (항만건설작업선의 선박안전법 제10조제3항(임시변경) 적용범위에 관한 연구)

  • Yeong-Tae Son
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • 제29권2호
    • /
    • pp.177-187
    • /
    • 2023
  • The Ship Safety Act prescribes matters necessary for the maintenance of seaworthiness and safe navigation of ships. In this regard, Article 10 of this Act requires shipowner to undergo occasional survey if he/she wants to temporarily change intends to modify the details entered in a ship survey certificate. Such measures are in accordance with the maintenance of the state of the ship after the ship inspection under Article 15 of this Act, and this Act includes "harbor construction work ship" under Article 39 Paragraph (1) of the Harbor Act. However, although the harbor construction work ship originally showed the same operating system as the barge, it was not applied to the Ship Safety Act and was registered and surveyed under the Construction Machinery Management Act. Then "Seokjeong No. 36" sinking accident in Ulsan on December 14, 2012, led to the amendment of the Harbor Act in 2016, and considering the fact that it was added to the Ship Safety Act and applied, there is a realistic limit to applying all the regulations stipulated in the Ship Safety Act to the harbor construction work ship. Accordingly, this study discusses the work characteristics through concept, registration, work area, survey regulations, application case of temporary alteration etc. of harbor construction work ships and controversial issues related to the scope of application of the Ship Safety Act of actual harbor construction work ships, and also the appropriate scope of "temporary alteration" among temporary inspections prescribed in Article 10 of the Ship Safety Act in consideration of the legislative purpose of incorporating harbor construction work ships into the survey subject to the Ship Safety Act in accordance with the revision of the Harbor Act.

A Study on the Application of Quality System Standards in the Safety Certification of LUAVs (무인동력비행장치 안전성인증에서 품질시스템 기준 적용 방안 연구)

  • Ji-Hun Kwon;Shin-Duck Kang;Tae-Seok Oh;Seok-Min Pae;Sauk-Hoon Im
    • Journal of Aerospace System Engineering
    • /
    • 제18권2호
    • /
    • pp.64-70
    • /
    • 2024
  • The demand for safety certification of Light Unmanned Aerial Vehicles (LUAVs), weighing between 25kg and 150kg, is rapidly increasing in Korea. Unfortunately, the number of LUAV safety certification failures is also on the rise, with manufacturing quality issues being identified as the main culprit. However, there is a lack of quality system standards for manufacturers within the LUAV safety certification system. As a result, this paper aims to analyze the domestic safety certification system and the quality standards set by the American Society for Testing and Materials (ASTM) for small Unmanned Aerial Systems (sUAS). The goal is to establish quality system inspection standards specifically tailored for LUAV manufacturers. To achieve this, we propose additional inspection items that reflect the characteristics of the manufacturing quality system. These items will be identified through on-site inspections of LUAV manufacturers, ensuring that the resulting quality system standard aligns with the actual situation of domestic manufacturers. In order to gauge the feasibility and effectiveness of the proposed quality system standard, we conducted a survey of seven domestic LUAV manufacturers.

A Study on the Risk Assessment of River Crossing Pipeline in Urban Area (도심지 하천매설배관의 위험성 평가에 관한 연구)

  • Park, Woo-Il;Yoo, Chul-Hee;Shin, Dong-Il;Kim, Tae-Ok;Lee, Hyo-Ryeol
    • Journal of the Korean Institute of Gas
    • /
    • 제24권2호
    • /
    • pp.22-28
    • /
    • 2020
  • In this study, quantitative risk assessment was carried out for city gas high-pressure pipelines crossing through urban rivers. The risk assessment was performed based on actual city gas properties, traffic volume and population and weather data in the worst case scenario conditions. The results confirmed that the social and individual risks were located in conditionally acceptable areas. This can be judged to be safer considering that the risk mitigation effect of protecting the pipes or installing them in the protective structure at the time of the construction of the river buried pipe is not reflected in the result of the risk assessment. Also, SAFETI v8.22 was used to analyze the effects of wind speed and pasquil stability on the accident damage and dispersion distances caused by radiation. As a result of the risk assessment, the safety of the pipelines has been secured to date, but suggests ways to improve safety by preventing unexpected accidents including river bed changes through periodic inspections and monitoring.

Workflow Procedures and Applications in BIM-based Design for Safety (DfS) (BIM 기반 설계안전성검토의 업무 절차와 활용 방안에 관한 연구)

  • Jaewoong Hwang;Heetaek Yoon;Junhyun Bae;Youngkon Park
    • Land and Housing Review
    • /
    • 제15권2호
    • /
    • pp.125-137
    • /
    • 2024
  • A conventional Design for Safety (DfS), introduced to eliminate potential hazards in the design phase proactively, has encountered persistent challenges, such as perfunctory risk assessments and hazard identifications based on 2D drawings and inefficient workflow processes. This study proposes a BIM-based approach to Design for Safety (DfS) to address the limitations of conventional methods, aiming to enhance efficiency and achieve practical safety management benefits. The proposed workflow process for BIM-based DfS has been refined and validated for on-site applicability through various case studies, including risk assessments during the design phase and field applications for safety management activities during the construction phase. Specifically, the critical process of risk assessment within the DfS methodology has also been transitioned to a BIM-based approach. This BIM-based risk assessment process has been evaluated through case studies, encompassing safety reviews for structural design, construction equipment operation, and construction methodology with sequence in design projects. Additionally, the proposed BIM-based DfS has demonstrated exceptional on-site applicability and efficiency, as validated by the application of a BIM deliverable embedded in DfS information for CDE-based daily activity briefing, VR-based safety training, AR-based mitigation measures inspections, and other safety management activities in the construction phase.