• Title/Summary/Keyword: Safety Injection System

Search Result 224, Processing Time 0.03 seconds

Review on Ocean Carbon Sequestration through Direct Injection (심층 분사를 통한 해양 이산화탄소 격리 기술 소개)

  • Park, Young-Gyu;Choi, Sang-Hwa;Matsumoto, Katsumi;Lee, Jung-Suk;Gang, Seong-Gil;Hwang, Jin-Hwa
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.2
    • /
    • pp.118-124
    • /
    • 2007
  • The oceans could absorb almost all the anthropogenic carbon dioxide the mankind has been producing eventually, but in the nature the air-sea $CO_2$ exchange occurs very slowly and to lower the atmospheric $CO_2$ concentration substantially $CO_2$ must be injected to the interior of the ocean directly. If we inject $CO_2$ collected at the major $CO_2$ sources into the international waters in the Philippine Sea or east of Japan, we could store the $CO_2$ in the oceans effectively for a few hundred years. When $CO_2$ is dissolved into the water, PH drops. The creatures adapted to the deep oceans where environment is very stable could be affected by even a small change in pH significantly. If, therefore, we are to inject $CO_2$ into the oceans, we must assess the effect of $CO_2$ injection in the marine ecosystem beforehand. Only when the damage to the marine ecosystem is smaller than the benefit from the $CO_2$ injection, $CO_2$ injection is effective.

  • PDF

Stress Distributions at the Dissimilar Metal Weld of Safety Injection Nozzles According to Safe-end Length and SMW Thickness (안전단 길이 및 동종금속용접부 두께 변화에 따른 안전주입노즐 이종금속용접부의 응력분포)

  • Kim, Tae-Jin;Jeong, Woo-Chul;Huh, Nam-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.979-984
    • /
    • 2015
  • In the present paper, we evaluate the effects of the safe-end length and thickness of the similar metal weld (SMW) of safety injection nozzles on stress distributions at the dissimilar metal weld (DMW). For this evaluation, we carry out detailed 2-D axisymmetric finite element analyses by considering four different values of the safe-end length and four different values of the thickness of SMW. Based on the results obtained, we found that the SMW thickness affects the axial stresses at the center of the DMW for the shorter safe-end length; on the other hand, it does not affect the hoop stresses. In terms of the safe-end length, the values of the axial and hoop stresses at the inner surface of the DMW center increase as the safe-end length increases. In particular, for the cases considered in the present study, the stress distributions at the DMW center can be categorized according to certain values of safe-end length.

Applications of Improved Low-Flow Mortar Type Grouting Method for Road Safety and Constructability in Dangerous Steep Slopes (급경사지 붕괴 위험지역의 도로 안전 및 시공성을 고려한 개선된 저유동 몰탈형 그라우팅공법 적용성 분석)

  • Choi, Gisung;Kim, Seokhyun;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.409-415
    • /
    • 2020
  • Low-flow mortar injection method grouting technology was selected and the traffic area was preserved as much as possible in order to secure safety for road traffic when the outflow and subsidence of landfill occurred due to ground-water, and etc. In particular, the current existing method was newly improved since there are risks of damage such as hydraulic fracturing at the lower part of the road, spilling of soil particles on steep slopes, and bumps on the road due to excessive injection pressure during construction. This study was carried out at the site of reinforcement work on the road as a maintenance work for the danger zone for collapse of the steep slope of the 00 hill, which was ordered from the 00 city 00 province. The improved low-flow mortar type grouting method adopted a new automated grouting management system and especially, it composites the method for grouting conditions decision by high-pressure pre-grouting test and injection technology by AGS-controlled and studied about grouting effect analysis by using new technology. By applying the improved low-flow mortar type grouting method, it was possible to lay the groundwork for road maintenance work such as the prevention of subsidence of old roads, uneven subsidence of buildings and civil engineering structures, and of soil leakage of ground-water spills. Furthermore, the possibility of application on future grouting work not only for just construction that prevents subsidence of old roads but also for various buildings and civil engineering structures such as railroads, subways, bridges, underground structures, and boulder stone and limestone areas was confirmed.

Contribution of thermal-hydraulic validation tests to the standard design approval of SMART

  • Park, Hyun-Sik;Kwon, Tae-Soon;Moon, Sang-Ki;Cho, Seok;Euh, Dong-Jin;Yi, Sung-Jae
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1537-1546
    • /
    • 2017
  • Many thermal-hydraulic tests have been conducted at the Korea Atomic Energy Research Institute for verification of the SMART (System-integrated Modular Advanced ReacTor) design, the standard design approval of which was issued by the Korean regulatory body. In this paper, the contributions of these tests to the standard design approval of SMART are discussed. First, an integral effect test facility named VISTA-ITL (Experimental Verification by Integral Simulation of Transients and Accidents-Integral Test Loop) has been utilized to assess the TASS/SMR-S (Transient and Set-point Simulation/Small and Medium) safety analysis code and confirm its conservatism, to support standard design approval, and to construct a database for the SMART design optimization. In addition, many separate effect tests have been performed. The reactor internal flow test has been conducted using the SCOP (SMART COre flow distribution and Pressure drop test) facility to evaluate the reactor internal flow and pressure distributions. An ECC (Emergency Core Coolant) performance test has been carried out using the SWAT (SMART ECC Water Asymmetric Two-phase choking test) facility to evaluate the safety injection performance and to validate the thermal-hydraulic model used in the safety analysis code. The Freon CHF (Critical Heat Flux) test has been performed using the FTHEL (Freon Thermal Hydraulic Experimental Loop) facility to construct a database from the $5{\times}5$ rod bundle Freon CHF tests and to evaluate the DNBR (Departure from Nucleate Boiling Ratio) model in the safety analysis and core design codes. These test results were used for standard design approval of SMART to verify its design bases, design tools, and analysis methodology.

The analysis of questionnaire survey to develop advanced fishing gear and to improve safe fishing procedure for offshore pot fishery (근해통발조업의 안전향상 및 어로장비 개발을 위한 요인분석)

  • AHN, Jong-Kap;JEONG, Geum-Cheol;PARK, You-Jin;AN, Young-Su
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.4
    • /
    • pp.302-315
    • /
    • 2021
  • In this study, factors such as improvement of a fishing process and safety, reduction of the labor force and headcount and development of the automation technology for offshore (eel and crab) pot fishing vessels were analyzed. A questionnaire survey was conducted to analyze and select the key factors using independent/paired sample t-test and correlation analysis, and a living lab was operated with ship owners, skippers and experts to discuss practical needs of the site. From the result of questionnaire survey and field requirements, it was possible to understand the level of awareness of ship safety, general safety equipment, fishing work process and fishing safety equipment from the point of view of the field. In addition, there were differences in the measurement results of each items because the working environment and experience were different according to the position of the ship owner and the skipper. The results of the questionnaire survey and various perceptions of field stakeholders were reflected when analyzing the fishing system and fishing process to choose the development equipment applicable to the field. From the analysis results, the selected development equipment based on the fishing equipment and process currently in operation are pot washing device, catch separation and fish hold injection device, length limit regulations and bait ejection device after use, automatic main line winding device, bait crusher, automatic (crab) pot hauling separator and so on.

Domestic Technical Standards and Performance Test of Photovoltaic PCS for Renewable Energy (신재생에너지용 태양광 PCS 국내 기술기준 및 성능시험)

  • Yoon, Yong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.479-484
    • /
    • 2018
  • This paper describes domestic technical standard of Photovoltaic(PV) PCS(Power Conditioning Systems)-Characteristics of the utility interface. This standard tests utility compatibility and personnel safety and equipment protection of PV inverter performance functions. Especially utility compatibility part includes test items of 1)voltage, current and frequency, 2)normal voltage operating range, 3)DC injection, 4)normal frequency operating range, 5)harmonics and 6)waveform distortion, 7)power factor of PV inverter. Therefore in this paper each test item of domestic technical standard is studied and analyzed and finally full tested by PV inverter performance function.

An Experimental Study on the Mass Release for a Hot Leg Break LBLOCA in Post Blowdown

  • Hong, Soon-Joon;Park, Goon-Cherl
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.405-410
    • /
    • 1996
  • New methodology for mass and energy release assessment in LBLOCA post blowdown is needed and, first of all, the phenomenologically improved and quantitative assessments through experiment are essential. For tile experiment of a hot leg break LBLOCA in post blowdown, the test facility was set and its feature is that tile broken hot leg has two broken sections in the tore side and in the SG side respectively and a separation valve between the two in order to measure the release rate dividedly. Specially it was focused on whether the mass release through the SG side broken section happened or not. The mass release through the core side broken section is dependent on tile safety injection flow and that through the SG side broken section varies depending on several factors. The principal factor is the primary system pressure and the subfactors such as SI flow rate, SI temperature and initial primary pressure, may contribute, too.

  • PDF

Comparative Measurement of Touch and Step Voltages in Ground Systems (접지시스템에서 접촉전압과 보폭전압의 비교측정)

  • Kim, Hwang-Kuk;Moon, Byung-Doo;Park, Dae-Won;Kil, Gyung-Suk;Han, Ju-Seop
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.311-315
    • /
    • 2008
  • Ground systems set the reference voltage level of circuit and system, and suppress Ground Potential Rise (GPR) by flowing fault currents to ground safely. There are several parameters which evaluate the performance of ground systems as ground resistance, touch voltage and step voltage. The touch and step voltages are especially important to ensure safety of human body. In this paper, we measured the touch and step voltages by injection of power frequency and surge current. Also correlation between touch and step voltages is compared and analyzed for the same ground systems.

  • PDF

A Novel Hybrid Anti-islanding Method to Improve Reliability of Utility Interactive Inverter for a PMSG-based Wind Power Generation System (PMSG 기반 풍력발전용 계통연계 인버터의 신뢰성 향상을 위한 새로운 하이브리드 단독운전 방지기법)

  • Kang, Sung-Wook;Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.11
    • /
    • pp.27-36
    • /
    • 2013
  • Islanding in a gird connected inverter of wind power generation system may influence a bad effect on equipments or yield safety hazards on grid so it should be detected rapidly and exactly. A passive method to detect islanding is comparatively simpler than an active method but suffers from non detection zone (NDZ). On the other hand, the active method can significantly reduce NDZ by injecting a disturbance into inverter output. To improve the reliability of islanding detection, this paper proposes a hybrid anti-islanding detection method combining the conventional passive method as well as the active method based on novel harmonic injection method using fourier transform. The proposed scheme is fast to detect islanding when NDZ does not exist because it has the nature of passive method. Under NDZ, the active method can detect occurrence of islanding reliably. The effectiveness and validity of the proposed scheme is proved through comparative simulations.

Moving reactor model for the MULTID components of the system thermal-hydraulic analysis code MARS-KS

  • Hyungjoo Seo;Moon Hee Choi;Sang Wook Park;Geon Woo Kim;Hyoung Kyu Cho;Bub Dong Chung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4373-4391
    • /
    • 2022
  • Marine reactor systems experience platform movement, and therefore, the system thermal-hydraulic analysis code needs to reflect the motion effect on the fluid to evaluate reactor safety. A moving reactor model for MARS-KS was developed to simulate the hydrodynamic phenomena in the reactor under motion conditions; however, its applicability does not cover the MULTID component used in multidimensional flow analyses. In this study, a moving reactor model is implemented for the MULTID component to address the importance of multidimensional flow effects under dynamic motion. The concept of the volume connection is generalized to facilitate the handling of the junction of MULTID. Further, the accuracy in calculating the pressure head between volumes is enhanced to precisely evaluate the additional body force. Finally, the Coriolis force is modeled in the momentum equations in an acceleration form. The improvements are verified with conceptual problems; the modified model shows good agreement with the analytical solutions and the computational fluid dynamic (CFD) simulation results. Moreover, a simplified gravity-driven injection is simulated, and the model is validated against a ship flooding experiment. Throughout the verifications and validations, the model showed that the modification was well implemented to determine the capability of multidimensional flow analysis under ocean conditions.