• 제목/요약/키워드: Safety Injection System

검색결과 224건 처리시간 0.026초

SPRAY CHARACTERISTICS OF DIRECTLY INJECTED LPG

  • Lee, S.W.;Y. Daisho
    • International Journal of Automotive Technology
    • /
    • 제5권4호
    • /
    • pp.239-245
    • /
    • 2004
  • It has been recognized that alternative fuels such as Liquid Petroleum Gas (LPG) show less polluting combustion characteristics than diesel fuel. Furthermore, engine performance is expected to be nearly equal to that of the diesel engine if direct-injection stratified-charge combustion of the LPG can be adopted in the spark-ignition engine. However, spray characteristics of LPG are quite different from those of diesel fuel. understanding the spray characteristics of LPG and evaporating processes are very important for developing efficient and low emission LPG engines optimized in fuel injection control and combustion processes. In this study, the LPG spray characteristics and evaporating processes were investigated using the Schlieren and Mie scattering optical system and single-hole injectors in a constant volume chamber. The results show that the mixture moves along the impingement wall that reproduced the piston bowl and reaches in ignition spark plug. LPG spray receives more influence of ambient pressure and temperature significantly than that of n-dodecane spray.

ISO 26262 표준 기반의 소프트웨어 검증을 위한 소프트웨어 결함 주입 기법 (Software Fault Injection Test Methodology for the Software Verification of ISO 26262 Standards-based)

  • 이상호;신승환
    • 한국자동차공학회논문집
    • /
    • 제22권3호
    • /
    • pp.68-74
    • /
    • 2014
  • As the number of ECUs (Electronic control units) are increasing, reliability and functional stability of a software in an ECU is getting more important. Therefore the application of functional safety standards ISO 26262 is making the software more reliable. Software fault injection test (SFIT) is required as a verification technique for the application of ISO 26262. In case of applying SFIT, an artificial error is injected to inspect the vulnerability of the system which is not easily detected during normal operation. In this paper, the basic concept of SFIT will be examined and the application of SIFT based on ISO26262 will be described.

반도체 및 FPD 분야에 사용되는 $SiH_{4}$ 가스의 공정 안전 고찰 (Review on the Process Safety of $SiH_{4}$ Gas used in Semiconductor and FPD Field)

  • 김중조;김홍
    • 한국안전학회지
    • /
    • 제22권4호
    • /
    • pp.32-36
    • /
    • 2007
  • When the vacuum system for the process of $SiH_{4}$ gas used in the semiconductor and FPD field is partially vented from vacuum to atmospheric state, a fire often occurs due to auto-ignition of $SiH_{4}$ gas. In order to prevent the fire, the concentration of $SiH_{4}$ should be kept under LFL. This means that the higher capacity pump is needed to meet the process conditions as well as the condition that the concentration of $SiH_{4}$ should be kept under LFL. In this article, we conducted the injection of the dilution gas at the manifold between booster pump and dry pump compared with the typical method that the dilution gas was injected into inlet port of booster pump using computer simulation. According to the result, we can flow further more purge gas for safety without any change of the condition in the process chamber, which means that the higher capacity pump is not required for safety in some cases.

Implicit Treatment of Technical Specification and Thermal Hydraulic Parameter Uncertainties in Gaussian Process Model to Estimate Safety Margin

  • Fynan, Douglas A.;Ahn, Kwang-Il
    • Nuclear Engineering and Technology
    • /
    • 제48권3호
    • /
    • pp.684-701
    • /
    • 2016
  • The Gaussian process model (GPM) is a flexible surrogate model that can be used for nonparametric regression for multivariate problems. A unique feature of the GPM is that a prediction variance is automatically provided with the regression function. In this paper, we estimate the safety margin of a nuclear power plant by performing regression on the output of best-estimate simulations of a large-break loss-of-coolant accident with sampling of safety system configuration, sequence timing, technical specifications, and thermal hydraulic parameter uncertainties. The key aspect of our approach is that the GPM regression is only performed on the dominant input variables, the safety injection flow rate and the delay time for AC powered pumps to start representing sequence timing uncertainty, providing a predictive model for the peak clad temperature during a reflood phase. Other uncertainties are interpreted as contributors to the measurement noise of the code output and are implicitly treated in the GPM in the noise variance term, providing local uncertainty bounds for the peak clad temperature. We discuss the applicability of the foregoing method to reduce the use of conservative assumptions in best estimate plus uncertainty (BEPU) and Level 1 probabilistic safety assessment (PSA) success criteria definitions while dealing with a large number of uncertainties.

병원간호사의 항암화학요법 제제 정맥주사 투약안전 수행능력 향상 활동을 위한 연구 -6시그마 기법을 적용하여- (A Study for Activities to Improve Ability to Perform Intravenous Injection Chemotherapy Medication Safety Management of Nurses - Using 6 Sigma Techniques -)

  • 김미란
    • 디지털융복합연구
    • /
    • 제10권11호
    • /
    • pp.467-475
    • /
    • 2012
  • 본 연구는 병원간호사의 항암화학요법 제제의 투약안전 체계를 분석하여 투약안전 문제점을 개선하기 위한 6시그마 기법을 적용한 방법론적 연구이다. 연구 결과 함암화학요법 제제 투약의 문제점은 과정, 간호사, 환경 관련의 3가지 요인으로 분석되었으며 임상 현장에서 개선 가능성과 효과가 가장 높은 '약물에 대한 지식과 수행능력의 부족'과 '간호사 대상의 약물 교육 부족' 에 대한 개선 활동을 진행하였다. 개선안으로 제시된 간호사의 항암화학요법 제제 투약안전 교육의 효과 검증을 위한 교육 전 후의 지식과 수행 정도는 통계적으로 모두 유의한 차이를 나타냈다. 간호사의 항암화학요법 제제 투약안전 교육 후 개선 사항을 유지하기 위해 관리 지표, 관리 방법 등에 대한 관리계획서 작성으로 개선 활동을 종료하였으며, 5단계 연구 진행은 투약안전을 목표로 한 간호실무 개선에 의의가 있다.

Effect of variation of water retention characteristics due to leachate circulation in municipal solid waste on landfill stability

  • M. Sina Mousavi;Yuan Feng;Jongwan Eun;Boo Hyun Nam
    • Geomechanics and Engineering
    • /
    • 제33권2호
    • /
    • pp.141-154
    • /
    • 2023
  • This study investigated the effect of water retention characteristics between aged and fresh Municipal Solid Waste (MSW) on the stability of the landfill. A series of transient numerical modeling for the slope of an MSW landfill was performed considering the variation of water retention characteristics due to leachate circulation. Four different scenarios were considered in this analysis depending on how to obtain hydraulic conductivity and the aging degree of materials. Unsaturated hydraulic properties of the MSW used for the modeling were evaluated through modified hanging column tests. Different water retention properties and various landfill conditions, such as subgrade stiffness, leachate injection frequency, and gas and leachate collection system, were considered to investigate the pore water distribution and slope stability. The stability analyses related to the factor of safety showed that unsaturated properties under those varied conditions significantly impacted the slope stability, where the factor of safety decreased, ranging between 9.4 and 22%. The aged materials resulted in a higher factor of safety than fresh materials; however, after 1000 days, the factor of safety decreased by around 10.6% due to pore pressure buildup. The analysis results indicated that using fresh materials yielded higher factor of safety values. The landfill subgrade was found to have a significant impact on the factor of safety, which resulted in an average of 34% lower factor of safety in soft subgrades. The results also revealed that a failed leachate collection system (e.g., clogging) could result in landfill failure (factor of safety < 1) after around 298 days, while the leachate recirculation frequency has no critical impact on stability. In addition, the accumulation of gas pressure within the waste body resulted in factor of safety reductions as high as 24%. It is essential to consider factors related to the unsaturated hydraulic properties in designing a landfill to prevent landfill instability.

가정용 연료전지 시스템 내부 수소 누출 시 센서 응답 특성에 관한 연구 (A experimental study on the sensor response at hydrogen leakage in a residential fuel cell system)

  • 김영두;신동훈;정태용;남진현;김영규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2009-2014
    • /
    • 2007
  • Hydrogen is a fuel of fuel cell system, which has powerful explosion possibility. Hence, the fuel cell system needs safety evaluation to prevent risk of hydrogen leakage. We use a actual size chamber of a common fuel cell module to analyze hydrogen. Hydrogen injection holes are located in lower part of the chamber in order to simulated hydrogen leakage. The hydrogen sensor can detect range of 0${\sim}$4%. Since the hydrogen gas, of which leaked amount is controled by MFC, are injected at the bottom holes, the transient sensor signals are measured. At a condition of 10cc/s of hydrogen leakage, the sensor detects hydrogen leakage after 22sec and there is also several seconds of time delay depending on the position of the sensor. This experimental data can be applied for the design of the hydrogen detection system and ventilation system of a residential fuel cell system.

  • PDF

Investigation of a Hydrogen Mitigation System During Large Break Loss-Of-Coolant Accident for a Two-Loop Pressurized Water Reactor

  • Dehjourian, Mehdi;Sayareh, Reza;Rahgoshay, Mohammad;Jahanfarnia, Gholamreza;Shirani, Amir Saied
    • Nuclear Engineering and Technology
    • /
    • 제48권5호
    • /
    • pp.1174-1183
    • /
    • 2016
  • Hydrogen release during severe accidents poses a serious threat to containment integrity. Mitigating procedures are necessary to prevent global or local explosions, especially in large steel shell containments. The management of hydrogen safety and prevention of over-pressurization could be implemented through a hydrogen reduction system and spray system. During the course of the hypothetical large break loss-of-coolant accident in a nuclear power plant, hydrogen is generated by a reaction between steam and the fuel-cladding inside the reactor pressure vessel and also core concrete interaction after ejection of melt into the cavity. The MELCOR 1.8.6 was used to assess core degradation and containment behavior during the large break loss-of-coolant accident without the actuation of the safety injection system except for accumulators in Beznau nuclear power plant. Also, hydrogen distribution in containment and performance of hydrogen reduction system were investigated.

확장된 소내전원 상실 사고시의 대체대응활동 완화를 위한 비교 연구: 시스템 엔지니어링 관점으로 (A Comparative Study on Mitigation Alternatives in Response to an Extended SBO for APR1400 Using Systems Engineering)

  • 이슬람 사브리 엘라스와크흐;오승종;임학규
    • 시스템엔지니어링학술지
    • /
    • 제12권2호
    • /
    • pp.91-99
    • /
    • 2016
  • The safety of nuclear power plants has received much attention; this safety largely depends on the continuous availability of electrical energy source during all modes of nuclear power plant operation. A station blackout (SBO) describes the loss of the off-site electric power, the failure of the emergency diesel generators, and the unavailability of the alternate AC (AAC) power. Consequently, all systems that are AC powered such as the safety injection, shutdown cooling, component cooling water, and essential service water systems are unavailable. The aim of this study is to investigate the deficiencies of the existing alternatives for coping with an extended SBO for APR1400 design. The method is analyzing the existing deficiencies and proposing an optimal solution for the NPP design during the extended SBO. This study, established a new passive system, called passive decay heat removal system (PDHRS), using systems engineering approach.

ADVANCED DVI+

  • Kwon, Tae-Soon;Lee, S.T.;Euh, D.J.;Chu, I.C.;Youn, Y.J.
    • Nuclear Engineering and Technology
    • /
    • 제44권7호
    • /
    • pp.727-734
    • /
    • 2012
  • A new advanced safety feature of DVI+ (Direct Vessel Injection Plus) for the APR+ (Advanced Power Reactor Plus), to mitigate the ECC (Emergency Core Cooling) bypass fraction and to prevent switching an ECC outlet to a break flow inlet during a DVI line break, is presented for an advanced DVI system. In the current DVI system, the ECC water injected into the downcomer is easily shifted to the broken cold leg by a high steam cross flow which comes from the intact cold legs during the late reflood phase of a LBLOCA (Large Break Loss Of Coolant Accident)For the new DVI+ system, an ECBD (Emergency Core Barrel Duct) is installed on the outside of a core barrel cylinder. The ECBD has a gap (From the core barrel wall to the ECBD inner wall to the radial direction) of 3/25~7/25 of the downcomer annulus gap. The DVI nozzle and the ECBD are only connected by the ECC water jet, which is called a hydrodynamic water bridge, during the ECC injection period. Otherwise these two components are disconnected from each other without any pipes inside the downcomer. The ECBD is an ECC downward isolation flow sub-channel which protects the ECC water from the high speed steam crossflow in the downcomer annulus during a LOCA event. The injected ECC water flows downward into the lower downcomer through the ECBD without a strong entrainment to a steam cross flow. The outer downcomer annulus of the ECBD is the major steam flow zone coming from the intact cold leg during a LBLOCA. During a DVI line break, the separated DVI nozzle and ECBD have the effect of preventing the level of the cooling water from being lowered in the downcomer due to an inlet-outlet reverse phenomenon at the lowest position of the outlet of the ECBD.