구조물의 공용연수가 증가함에 따라 각종 성능 저하가 발생한다. 특히 국내 인프라 구조물은 대부분 경제가 성장하는 시기에 집중적으로 건설되었기 때문에 노후 인프라 비율 급증이 최근 주요 이슈가 되고 있다. 인프라의 노후화는 자칫 안전사고로 이어질 수 있으며 인명 피해까지 유발할 수 있다. 이러한 문제를 사전에 예방하기 위하여 주기적이고 정확한 점검 및 유지관리가 필수적이다. 이 같은 이유로 최근 컴퓨터 비전과 딥러닝을 활용하여 다양한 손상을 탐지하는 연구에 대한 수요가 원격점검 혹은 점검자동화 분야에서 증가하고 있다. 따라서 본 논문에서는 콘크리트 손상의 종류를 세 가지로 구분하여 이를 탐지할 수 있는 신경망 구조를 제안했다. 특히 계층적 학습 기법을 통해 보다 정확하게 다양한 손상을 탐지할 수 있는 신경망을 개발하였다. 이 신경망은 2,026장의 손상 영상으로 학습되었고, 508장의 손상 영상으로 실험하였다. 그 결과 67.04%의 평균 중첩 정확도와 52.65%의 F1 점수를 갖는 알고리즘을 완성하였다. 이 같은 손상 탐지 알고리즘은 향후 구조물의 정확한 상태 진단에 활용될 수 있으리라 기대한다.
The quality of meat is highly variable in many properties. This variability originates from both animal production and meat processing. At the pre-slaughter stage, animal factors such as breed, sex, age contribute to this variability. Environmental factors include feeding, rearing, transport and conditions just before slaughter (Hildrum et al., 1995). Meat can be presented in a variety of forms, each offering different opportunities for adulteration and contamination. This has imposed great pressure on the food manufacturing industry to guarantee the safety of meat. Tissue and muscle speciation of flesh foods, as well as speciation of animal derived by-products fed to all classes of domestic animals, are now perhaps the most important uncertainty which the food industry must resolve to allay consumer concern. Recently, there is a demand for rapid and low cost methods of direct quality measurements in both food and food ingredients (including high performance liquid chromatography (HPLC), thin layer chromatography (TLC), enzymatic and inmunological tests (e.g. ELISA test) and physical tests) to establish their authenticity and hence guarantee the quality of products manufactured for consumers (Holland et al., 1998). The use of Near Infrared Reflectance Spectroscopy (NIRS) for the rapid, precise and non-destructive analysis of a wide range of organic materials has been comprehensively documented (Osborne et at., 1993). Most of the established methods have involved the development of NIRS calibrations for the quantitative prediction of composition in meat (Ben-Gera and Norris, 1968; Lanza, 1983; Clark and Short, 1994). This was a rational strategy to pursue during the initial stages of its application, given the type of equipment available, the state of development of the emerging discipline of chemometrics and the overwhelming commercial interest in solving such problems (Downey, 1994). One of the advantages of NIRS technology is not only to assess chemical structures through the analysis of the molecular bonds in the near infrared spectrum, but also to build an optical model characteristic of the sample which behaves like the “finger print” of the sample. This opens the possibility of using spectra to determine complex attributes of organic structures, which are related to molecular chromophores, organoleptic scores and sensory characteristics (Hildrum et al., 1994, 1995; Park et al., 1998). In addition, the application of statistical packages like principal component or discriminant analysis provides the possibility to understand the optical properties of the sample and make a classification without the chemical information. The objectives of this present work were: (1) to examine two methods of sample presentation to the instrument (intact and minced) and (2) to explore the use of principal component analysis (PCA) and Soft Independent Modelling of class Analogy (SIMCA) to classify muscles by quality attributes. Seventy-eight (n: 78) beef muscles (m. longissimus dorsi) from Hereford breed of cattle were used. The samples were scanned in a NIRS monochromator instrument (NIR Systems 6500, Silver Spring, MD, USA) in reflectance mode (log 1/R). Both intact and minced presentation to the instrument were explored. Qualitative analysis of optical information through PCA and SIMCA analysis showed differences in muscles resulting from two different feeding systems.
본 연구는 고속도로에서 발생한 교통사고 블랙박스 영상을 기반으로 군집분석과 예측모형 비교를 수행하였다. 분석자료로 사고 직전의 도로 및 교통 상황을 파악할 수 있는 차량 주행행태, 노면 상태 등 사고 영상에서 추출이 가능한 항목을 설명변수로 활용하였다. 여러 요소에 의해 영향을 받는 교통사고 데이터의 특징을 고려하여 데이터의 이질성을 반영하는 군집분석을 활용하였다. 군집분석으로 분류된 각 군집을 사고 심각도 수준의 비율을 기준으로 나누고, 종속변수인 인명피해 수준을 반영하여 사고 예측 평가를 수행하였다. 사고 예측모형은 로짓 모형(Logit model)을 적용한 결과, 전체 데이터를 분석한 경우보다 군집분석에 의해 두 개의 사고 심각도 그룹을 분류하여 예측했을 때 우수한 예측 능력을 보여주었다. 이는 군집분석을 통한 그룹별 사고 특성과 사고 심각도를 반영하여 사고위험을 예측하는 것이 더 효과적인 것으로 판단된다. 또한 2차 사고와 같은 정차 중 추돌사고, 차로변경 중 측면 추돌사고 등이 중요한 주행행태변수로 작용하는 것으로 나타났다.
연구목적: 이 연구는 최근 급증하고 있는 신종 마약류에 대하여 살펴보고, 이를 근절할 수 있는 대응방안을 제시하기 위한 목적의 연구이다. 연구방법:연구의 목적을 달성하기 위하여 관련 분야의 선행연구 및 통계, 해외 자료 등을 이용하여 신종 마약류에 대한 문제점을 파악하고 대응방안을 제시하고자 한다. 연구결과: 과거에 비해 국내로 마약류 투약·유통·제조하는 마약류 범죄자의 적발 사례가 급격하게 증하고 있는 모습을 보이고 있다. 2021년 마약류 관련 통계자료를 살펴보면, 2021년에는 전년대비 감소하는 모습을 보였으나, 적발되는 마약량은 세배 이상 증가한 모습을 보이고 있으며, 외국인 마약사범이 급벽하게 증가하고 있고, 마약류 사범의 연령대가 감소하는 우려스러운 모습을 보여주었다. 이러한 결과는 신종 마약류 확산이 크게 영향을 끼치고 있는데, 특히 펜타닐과, 야바, 까뜨, 크라톰 등과 같은 신종마약류의 확산과 새로운 향정신성의 의약품 및 대마관련 물품의 영향이라고 보여진다. 결론: 신종마약류의 확산에 따라 임시마약류 지정방식을 간소화하고 외국인 마약사범의 단속을 확대하고, 관세청 및 식약청 등 관련 기관과의 협력을 강화함과 동시에 마약사범에 대한 강력한 처벌을 통하여 신종마약류에 대한 대응을 강화하는 방안을 제안해 본다.
최근 도심지에서는 지반침하가 지속적으로 발생하여 시민의 안전을 위협하고 있다. 상하수도관, 통신관 등 각종 지하시설물이 도로 밑에 매설되어 있다. 지반침하의 원인으로는 도심지에 매설되어 있는 각종 시설물의 노후화와 급격한 도시화로 인한 지하 난개발로 인한 것으로 보고되고 있다. 특히 지반침하의 가장 큰 원인은 하수관로의 노후화로 알려져 있다. 이와 관련된 기존 연구로는 하수관로의 대표적인 몇 가지 요인을 선정하여 통계분석을 통해 지반침하 위험을 예측하는 연구가 진행되었다. 본 연구에서는 OO시의 하수관 특성과 지반침하 데이터를 이용하여 데이터셋을 구축하고, OO시의 하수관 특성과 지반함몰 발생 위치 데이터로 구축된 데이터셋으로 기계학습을 통한 하수관 특성에 따른 지반함몰 발생 분류 모델들을 비교하여 적절한 모델을 선정하고자 하였으며, 선정된 모델에서 도출된 지반함몰에 영향을 미치는 하수관 특성별 중요도를 산정하고자 하였다.
본 연구는 앞으로 도시 시민의 안전보호와 시설물 관리를 위하여 공공부문의 통합관제서비스가 증가할 것으로 예상됨에 따라 서울 소재의 CCTV통합관제센터에 대하여 유형별 분류와 실내공간특성에 대한 분석을 실시하였다. 조사대상은 2007년 이후 구축된 서울의 통합관제센터 8곳으로 일반적인 특성, 공간기본정보, 실내공간특성의 기준에 맞춰 분석하였으며 조사의 결과를 정리한 것은 다음과 같다. 첫째, 통합관제센터의 공간기본정보를 살펴보면 소규모 CS형이 가장 많이 나타나 현재 통합관제센터 공간의 물리적 환경에 대한 면적 비중은 그리 높지 않은 것으로 나타났다. 둘째, 통합관제센터의 공간기본정보를 살펴보면 보안영역, 사무영역, 공공영역의 순으로 공간의 크기 비율에 차이가 있었다. 셋째, 현재 국내의 통합관제센터는 행정안전부의 가이드라인에 따라 획일적인 형태나 구조, 실내 환경을 나타내는 것으로 분석되었다. 본 연구는 실내디자인 연구 분야에서 깊이 있게 다루지 못했던 통합관제센터에 대한 사례연구를 실시함으로써 향후 더 나은 통합관제센터를 계획할 시 기초자료로 제공될 수 있다. 물론 본 연구는 조사대상의 사례 수가 많지 않다는 한계가 있으나 추후 사용자 인터뷰나 공간 사용성 평가 분석 등을 통해 사례분석 보다 심도있는 연구를 진행할 예정이다. 본 연구의 결과가 모니터링 실내환경을 위한 기초자료로 쓰이길 기대한다.
정보통신기술(ICT) 및 인공지능(AI) 기술 산업의 급격한 발전에 따라 먼 미래로만 생각했던 자율운항선박의 등장이 최근들어 현실로 다가오고 있다. 이러한 급격한 기술의 발전과 더불어 해양법 분야에서의 해사안전, 해양환경보호, 해양질서유지 등의 공법(公法)분야분만 아니라 책임, 손해배상, 해상보험 등 사법(私法)분야에서의 변화 또한 필수불가결하게 되었다. 특히 선원이 승선하지 않는 자율운항선박이라는 새로운 형태의 선박의 등장으로 해양사고 발생 시 책임, 손해배상, 보험계약 등의 그 유형과 종류 또한 달라질 것이다. 이 논문에서는 먼저 자율운항선박의 개념, 분류, 효과 및 미래에 대한 일반적 이론 및 자율운항선박 논의를 위한 해상법의 개념과 해상법상 각종 의무와 책임에 대한 일반적 이론을 살펴본다. 다음으로 자율운항선박의 해양사고 발생 시 선박으로서 지위, 용선 계약상의 법률관계, 감항능력주의의무, 책임의 주체 및 손해배상책임과 면책에 대한 쟁점 사항을 해상법적 관점에서 검토한다. 아울러 향후 자율운항선박 4단계에서 해양사고 발생 시 책임의 귀속 주체와 기준을 명확히 하기 위한 추가적인 연구의 필요성과 더불어 이를 위한 기술개발·법령정비·자금지원 등 제도적 개선의 필요성을 제시한다.
제조업의 안전보건 기준은 다양한 항목이 존재하지만, 질병 재해자 기준에서 업무상 질병과 근골격계 질환으로 나눌 수 있다. 이 중 근골격계 질환은 제조업에서 가장 많이 발생하며, 나아가서 제조 현장의 노동생산성감소 및 경쟁력 약화까지 유발할 수 있어서 이를 사전에 확인할 수 있는 시스템이 필요한 실정이다. 본 논문에서는 제조업 노동자의 근골격계 유해 요인을 검출하기 위하여 근골격계 부담작업 요인 분석 데이터 속성, 유해 요인 작업자세, 관절 키포인트를 정의하고 인공지능 학습용 데이터를 구축하였다. 구축한 데이터의 유효성을 판단하기 위해서 YOLO, Dite-HRNet, EfficientNet 등의 AI 알고리즘을 활용하여 학습하고 검증하였다. 실험 결과 사람 탐지 정확도는 99%, 탐지된 사람의 관절 위치 추론 정확도는 @AP0.5 88%, 추론된 관절 위치를 종합하여 자세를 평가한 정확도는 LEGS 72.2%, NECT 85.7%, TRUNK 81.9%, UPPERARM 79.8%, LOWERARM 92.7%를 도출하였으며, 추가로 딥러닝 기반의 근골격계 질병을 예방할 수 있는 연구에 필요한 요소를 고찰하였다.
자연재해는 지역사회 전반에 극심한 스트레스를 발생시킨다. 다수의 경우 시간의 흐름에 따라 충격을 극복하지만, 일부는 PTSD와 같은 장기적인 정신적 피해를 경험하게 된다. 이에 재난과 심리적 충격에 관한 연구가 진행되고 있지만, 여전히 부족한 수준이다. 자연재해는 시설 붕괴, 인명피해 등 다양한 피해를 야기하기에 피해자가 경험하는 피해의 종류가 다르며, 경험하는 상실의 정도에도 차등이 있다. 특히 자연재해로 인한 가장 흔한 피해인 주택파손의 경우 피해자가 경험하는 충격은 매우 크다. 따라서 본 연구는 자연재해로 주택이 파손된 가구가 경험하는 심리적 충격을 확인하고, 추적연구를 통해 심리적 충격이 변화하는 특성을 확인하고자 하였다. 연구 결과, 주택이 파손된 경우 심리적 충격이 더 크게 나타나 주택의 파손으로 인한 심리적 충격이 다른 피해로 인한 충격보다 더 큰 것을 확인했다. 또, 재난으로 인해 발생하는 심리적 충격이라고 할지라도 불안, 우울, PTSD 그리고 전반적인 심리적 충격 등 그 성격에 따라 변화 양상에 영향을 미치는 요인이 다른 것으로 나타났다. 그 중, 보건의료 서비스는 모든 변수에서 유의하게 분석돼 재난 이후 안전과 관련된 기본서비스의 제공이 가장 필요로 된다고 해석된다. 또, 재난구호서비스 중 심리 안정 지원은 불안, 우울과 같은 단기적인 충격에는 긍정적인 영향을 미치나, 심리적 영향이 가중된 PTSD에서는 오히려 역효과를 보여 심리지원체계의 변화 및 발전이 요구된다고 할 수 있다.
현 도로교통법상 도로 이용의 효율성과 교통안전 확보의 목적으로 차로 별 통행 가능 차종을 지정한 제도로써, 2020년 개정안이 현재 시행되고 있다. 독일과 국내의 자동차 1만 대당 교통사고 사망자 수를 비교하였을 때, 독일의 교통사고 사망자는 국내보다 현저히 낮은 수치를 기록하고 있다. 대표적으로 속도의 제한을 두지 않은 독일 아우토반의 사례는 한국의 속도위반법만이 사고율의 경감에 정답이 되지 않는다는 점을 시사한다. 아우토반 고속도로의 킵 라이트 원칙(keep right principle)에 따라 준수되는 지정차로제는 교통사고 감소에 큰 역할을 한다. 이러한 사실을 기반으로 지정차로제 위반 차량의 단속과 준수율 향상을 위한 교통 단속 시스템을 제안한다. 딥러닝 객체 인식 모델인 Yolo5를 이용하여 차종을 인식하고 OpenCV를 이용하여 차량 번호판과 차선을 인식 및 추출된 데이터를 서버에 저장하여 법규의 위반 여부를 판별하는 지정차로제 단속시스템을 개발한다. 이에 따라 운전자의 제도 인식 및 준수율의 향상을 통한 교통사고율의 감소 효과가 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.