• Title/Summary/Keyword: Safer design

Search Result 207, Processing Time 0.036 seconds

A Study on the Structural Design of a Seat frame in Automotive Vehicles (승용차 시트프레임의 구조설계에 관한 연구)

  • 김홍건;조영태;최금호;이병휘
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.159-163
    • /
    • 1999
  • A seat frame structure in automotive vehicles made of polymer matrix composite to achieve weight reduction at low cost was developed. In order to design and manufacture the actual product, studies on material selection, and structural analyses were performed. Structural analyses were performed with a finite element analysis. Analyses were done for several cases suggested in various safety regulations of FMVSS(Federal Motor Vehicle Safety Standards). Each result was utilized to modify the actual shape to obtain a lighter, safer and more stable design. The final design was used to produce a sample bottom plate of the seat structure. Substitution of the material resulted in a weight reduction effect with equivalent strength, fatigue and impact characteristics. Furthermore, several effects from the replacement of the material besides weight reduction were also examined.

  • PDF

Fuel Cycle Cost Modeling for the Generation IV SFR at the Pre-Conceptual Design Stage

  • Kim, Seong-Ho;Moon, Kee-Hwan;Kim, Young-In
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.11a
    • /
    • pp.51-52
    • /
    • 2009
  • Recently, several industrial countries using the fission energy have given attention to the Gen-IV SFR (sodium-cooled fast reactor) for achieving sustainable nuclear energy systems. In this context, an SFR is currently developed at the design concepts study stage in the Republic of Korea [Kim & Hahn 200909]. The sustainability of systems means economic, environment-friendly, proliferation-resistant, and safer systems. More specifically, this sustainability can be accomplished in terms of resource recycling and radioactive waste reduction. In the present work, the objective of fuel cycle cost modeling is to identify the impact of various conceptual options as a cost reduction measure for the Gen-IV SFR at the design concepts study stage. It facilitates the selection of several reasonable fuel cycle pathways for the future Gen-IV SFR from an economic viewpoint.

  • PDF

Optimum Life-cycle Cost Design of Orthotropic Steel Deck Bridges (강상판교의 생애주기비용 최적설계)

  • Cho, Hyo Nam;Min, Dae Hong;Lee, Kwang Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.4
    • /
    • pp.337-349
    • /
    • 2001
  • This study present an optimum deck and girder system design for minimizing the life-cycle cost (LCC) of orthotropic steel deck bridges. The problem of optimum LCC design of orthotropic steel deck bridges is formulated as that of minimization of the expected total LCC that consists of initial cost, maintenance cost, expected retrofit costs for strength, deflection, and fatigue. To demonstrate the effect of LCC optimum design of orthotropic steel deck bridges, the proposed optimum LCC design is compared with the conventional method for orthotropic steel deck bridges design. From the numerical investigations, it may be positively stated that the proposed optimum design procedure for orthotropic steel deck bridges based on the LCC will lead to more rational, economical and safer design.

  • PDF

A Design for seognam city street environment equipment (성남시 통합가로환경시설물디자인 계획안)

  • Park, Young-Tae
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2007.05a
    • /
    • pp.57-58
    • /
    • 2007
  • Nowadays, the government, nongovernmental organizations, and educational institutions have come up with a variety of policies and objectives which are concerned about the importance of public design in the city. The project for integrated street environment in Sung-Nam at this time has started with the purpose to make the citizens' life safer and wealthier, and the purpose to improve the image of the nation. In the process of modernization, we must realize the overlooked problem(the thoughtless development for the environment and the threatening of the identity about the disagreed value and esthetic sense.) as our problem. We have focused on the suggestion of the road facilities suitable for urbanization which coincides with the quiet city and the global standards rather than pursuing the local growth and meaning. Based on the New Governance Design, we have presented the liberal design process which actively accepts the experts in a variety of fields. With the language of design, 'high-tech, self-restraint, and growth', we have made a homogeneous urban factor which is ideal for time and space.

  • PDF

A Geometric Design Method Based on the Running Speed Distribution (주행속도 분포 특성을 이용한 설계기준 적용 방안)

  • Jeong, Jun-Hwa;Park, Chang-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.5 s.83
    • /
    • pp.113-120
    • /
    • 2005
  • Highway geometric design aims to provide drivers with safe and efficient road conditions. Highway design method of Korea doesn't consider demand characteristics of drivers, vehicles etc. Therefore there is a gap between designer's expectation and user's behavior and it hinders to make safer roads. It is required to develop the geometric design criteria and design method based on driving characteristics to provide safe and flexible design. This study suggested a geometric design method of horizontal curves on rural 4-lane highways based on speed distribution.

Life-Cycle Cost Optimization of Steel Box Girder Bridges (강상자형교의 생애주기비용 최적설계)

  • 조효남;민대홍;권우성
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.557-566
    • /
    • 2002
  • This paper presents an optimum deck and girder system design for minimizing the life-cycle cost(LCC) of steel box girder bridges. The problem of optimum LCC design of steel box girder bridges is formulated as that of minimization of the expected total LCC that consists of initial cost, maintenance cost and expected retrofit costs for strength, deflection and crack. To demonstrate the cost effectiveness of LCC design of steel box girder bridges, the LCC optimum design is compared with conventional design method for steel box girder bridges. From the numerical investigations, it may be positively stated that the optimum design of steel box girder bridges based on LCC will lead to mote rational, economical and safer design.

Risk-based Safety Impact Assessment for Construction Projects (위험도 접근방법에 의한 건설사업 안전영향평가방안에 관한 연구)

  • Choi Hyun-Ho;Jung Pyung-Ki;Seo Jong-Won;Choi Ook
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.504-509
    • /
    • 2004
  • Safety assessment of construction projects may be affected by various factors such as types and scale of projects, construction methods, procedure, climactic, and site conditions etc. Presently, in planning and design phases, designers are still often uncertain of their responsibilities, l3i]I information and training of safety. Therefore, designers are still failing to exploit the potential that have to eliminate and reduce risks on site. In this study, the concepts of safety impact assessment is introduced in order to derive the performing design for safety in design phase. For this purpose, a framework for safety impact assessment model using risk-based approach for construction projects is suggested. The suggested model includes of information survey and scenarios, classification of safety impact factors occurred by design and construction, and quantitative estimation of magnitude and frequency. Moreover, the checklist which is enable to identify relationship between safety impact factors and design factors is developed and the methodology of safety impact assessment model using risk-based approach is also proposed.

  • PDF

A study on improvement of walking safety in newtown schoolzone way (신도시 교육환경개선에 관한 연구 -통학로의 안전성 확보를 중심으로-)

  • Yoon, Yong-Gi
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.10 no.1
    • /
    • pp.53-63
    • /
    • 2011
  • The purpose of this study is to suggest a scheme to provide children safer and more comfortable walking circumstances by survey current walking circumstances of schoolzone ways. A scheme suggested in this study was based on the analysis of survey to elementary school in 3 Newtowns(Dongtan, Dongbaek and Gumdan City) and actually surveyed data on school zone, the scheme can be summed up as follows; First, to avoid pedestrian roads being interrupted and to expend waiting space near schoolzone ways, several measures are needed including fixing roads and building additional gateway. Second, pedestrian crossings in front of school gate should be located at least 30m away from the left side of the gate. Third, to secure pedestrians' safety in school zone ways should be planed and established more security concepts und facilities.

Estimation of Contact Stress Distribution Factor in Bolt Joint with variable Fastening torque (체결력에 따른 볼트 결합부의 접촉응력분포계수 평가)

  • 김종규
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.73-79
    • /
    • 1999
  • Most of mechanical structures are combined of substructures such as beams and/or plates. There are few systems with unibody structures but are many systems with united body structures. Generally the dynamic a nalysis of whole structures is performed under alternation load. In the structure design, the analysis of each bolted joint is more important than others for zero severity. This paper presents the analysis method of contact stress distribution factor in the bolted joint with variable fastening torque on joints in the structure. At first, a static vibration test was performed to find out a nominal stress of bolt jointed plates from the relationship between natural frequency and nominal stress. Then a contact stress was computed at contact point between bolt and plate in the structure. It is believed that the proposed method has promisiong implications for safer design with index of contact stress distribution factor and has merits for cost-down and saving time at the beginning of vehicle development.

  • PDF

Examination of the structural design for SWATH ship (최소 선면쌍동선 구조설계에 대한 고찰)

  • 박명규;신영식
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.1 no.1
    • /
    • pp.95-106
    • /
    • 1995
  • The small-waterplane-area-twin-hull(SWATH) ship has been recognized as a promising high performance ship because of her superior seakeeping characteristics and large deck area for various operations compared to the conventional monohull ship. significant advances in analytical technics for the prediction of the ship motions, wave loads and structural responses, structural fatigue and its prediction, and hull vibration for ship motions, wave loads and structural responses, structural fatigue and its prediction, and hull vibration for SWATH ship have been much developed during the last twenty years. Based on these developments in technology an integrated computational procedures for prediction wave loads and structural responses can be used to get a accurate results. But the major problem of SWATH ship's structural design is the accurate prediction of structural responses by the maximum critical loads likely to be experienced during the life of SWATH. To get a easier and safer computational procedures and the analytical approach for determining the accurate structural responses, a case study has been presented through the project experienced.

  • PDF