• Title/Summary/Keyword: Sacrificial layer

Search Result 94, Processing Time 0.027 seconds

Effect of the fixed oxide charge on the metal-oxide-silicon-on-insulator structures (metal-oxide-silicon-on-insulator 구조에서 고정 산화막 전하가 미치는 영향)

  • Jo, Yeong-Deuk;Kim, Ji-Hong;Cho, Dae-Hyung;Moon, Byung-Moo;Koh, Jung-Hyuk;Ha, Jae-Geun;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.83-83
    • /
    • 2008
  • Metal-oxide-silicon-on-insulator (MOSOI) structures were fabricated to study the effect caused by reactive ion etching (RIE) and sacrificial oxidation process on silicon-on-insulator (SOI) layer. The MOSOI capacitors with an etch-damaged SOI layer were characterized by capacitance-voltage (C-V) measurements and compared to the sacrificial oxidation treated samples and the reference samples without etching treatment. The measured C-V curves were compared to the numerical results from 2-dimensional (2-D) simulations. The measurements revealed that the profile of C-V curves significantly changes depending on the SOI surface condition of the MOSOI capacitors. The shift in the measured C-V curves, due to the difference of the fixed oxide charge ($Q_f$), together with the numerical simulation analysis and atomic force microscopy (AFM) analysis, allowed extracting the fixed oxide charges ($Q_f$) in the structures as well as 2-D carrier distribution profiles.

  • PDF

A 32 by 32 Electroplated Metallic Micromirror Array

  • Lee, Jeong-Bong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.4
    • /
    • pp.288-294
    • /
    • 2002
  • This paper presents the design, fabrication and characterization of a 32 by 32 electroplated micromirror array on a glass, a low cost substrate. Approaches taken in this work for the fabrication of micromachined mirror arrays include a line addressing scheme, a seamless array design for high fill factor, planarization techniques of polymeric interlayers, a high yield methodology for the removal of sacrificial polymeric interlayers, and low temperature and chemically safe fabrication techniques. The micromirror is fabricated by aluminum and the size of a single micromirror is 200 $\mu\textrm{m}{\;}{\times}200{\;}\mu\textrm{m}$. Static deflection test of the micro-mirror has been carried out and pull-in voltage of 44V and releasing voltage of 30V was found.

Design Method for Sublimation Drying System for Prevention of Stiction (점착방지를 위한 승화건조기의 설계방법)

  • Kim, Jong-Pal;Lee, Sang-Woo;Chun, Kuk-Jin;Cho, Dong-Il
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2550-2552
    • /
    • 1998
  • The stiction phenomena poses a design constraint in surface micromachining by reducing the releasable size of the microstructure. This problem occurs during the fabrication process of surface micromachined microstructures during the wet etch of sacrificial layers. For the prevention of the sticking problem, the microsctructure is released by sublimation after the substitution of the sacrificial layer etchant with a sublimation material heated above its melting temperature. In the sublimation drying method, the sublimation materials such as p-dichlorobenzene, t-butyl alcohol, and cyclohexane are used. In this paper, a method for designing a sublimation drying system is developed, and its performance is experimentally evaluated.

  • PDF

Characterization of thermally driven polysilicon micro actuator (폴리실리콘 마이크로 액츄에이터의 열구동 특성분석)

  • Lee, Chang-Seung;Lee, Jae-Youl;Chung, Hoi-Hwan;Lee, Jong-Hyun;Yoo, Hyung-Joun
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.2004-2006
    • /
    • 1996
  • A thermally driven polysilicon micro actuator has been fabricated using surface micromachining techniques. It consists of P-doped polysilicon as a structural layer and TEOS (tetracthylorthosilicate) as a sacrificial layer. The polysilicon was annealed for the relaxation of residual stress which is the main cause to its deformation such as bending and buckling. And the newly developed HF VPE (vapor phase etching) process was also used as an effective release method for the elimination of sacrificial TEOS layer. The thickneas of polysilicon is $2{\mu}m$ and the lengths of active and passive polysilicon cantilevers are $500{\mu}m$ and $260{\mu}m$, respectively. The actuation is incurred by die thermal expansion due to the current flow in the active polysilicon cantilever, which motion is amplified by lever mechanism. The moving distance of polysilicon micro actuator was experimentally conformed as large as $21{\mu}m$ at the input voltage level of 10V and 50Hz square wave. The actuating characteristics are investigated by simulating the phenomena of heat transfer and thermal expansion in the polysilicon layer. The displacement of actuator is analyzed to be proportional to the square of input voltage. These micro actuator technology can be utilized for the fabrication of MEMS (microelectromechanical system) such as micro relay, which requires large displacement or contact force but relatively slow response.

  • PDF

Polymer Based Slim Tactile Sensor: Optimal Design and New Fabrication Method (폴리머 기반 슬림형 촉각센서의 최적 설계 및 새로운 공정 방법)

  • Lee, Jeong-Il;Sato, Kazuo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.131-134
    • /
    • 2011
  • In this study, we propose an optimal design and new fabrication method for a slim tactile sensor. Slim tactile sensor can detect 3-axial forces and has suitable flexibility for intelligent robot fingers. To amplify the contact signal, a unique table-shaped structure was attempted. A new layer-by-layer fabrication process for polymer micromachining that can make a 3D structure by using a sacrificial layer was proposed. A table-shaped epoxy sensing plate with four legs was built on top of a flexible polymer substrate. The plate can convert an applied force to a concentrated stress. Normal and shear forces can be detected by combining responses from metal strain gauges embedded in the polymer substrate. The optimal positions of the strain gauges are determined using the strain distribution obtained from finite element analysis.

Reduction of the residual stress of various oxide films for MEMS structure fabrication (MEMS 공정을 위한 여러 종류의 산화막의 잔류응력 제거 공정)

  • Yi, Sang-Woo;Kim, Sung-Un;Lee, Sang-Woo;Kim, Jong-Pal;Park, Sang-Jun;Lee, Sang-Chul;Cho, Dong-Il
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.265-273
    • /
    • 1999
  • Various oxide films are commonly used as a sacrificial layer or etch mask in the fabrication of microelectromechanical systems (MEMS). Large residual strain of these oxide films causes the wafer to bow, which can have detrimental effects on photolithography and other ensuing processes. This paper investigates the residual strain of tetraethoxysilane (TEOS), low temperature oxide (LTO), 7 wt% and 10 wt% phosphosilicate glass (PSG). Euler beams and a bent-beam strain sensor are used to measure the residual strain. A poly silicon layer is used as the sacrificial layer, which is selectively etched away by $XeF_2$. First, the residual strain of as-deposited films is measured, which is quite large. The residual strain of the films is also measured after annealing them not only at $500^{\circ}C$, $600^{\circ}C$, $700^{\circ}$ and $800^{\circ}C$ in $N_2$ environment for 1 hour but also at the conditions for depositing a $2\;{\mu}m$ thick polysilicon at $585^{\circ}C$ and $625^{\circ}C$. Our results show that the 7 wt% PSG is best suited as the sacrificial layer for $2\;{\mu}$ thick polysilicon processes.

  • PDF

Characteristics and Formation of Thermal Oxidative Film Silicon Carbide for MOS Devices (MOS 소자용 Silicon Carbide의 열산화막 생성 및 특징)

  • O, Gyeong-Yeong;Lee, Gye-Hong;Lee, Gye-Hong;Jang, Seong-Ju
    • Korean Journal of Materials Research
    • /
    • v.12 no.5
    • /
    • pp.327-333
    • /
    • 2002
  • In order to obtain the oxidation layer for SiC MOS, the oxide layers by thermal oxidation process with dry and wet method were deposited and characterized. Deposition temperature for oxidation layer was $1100^{\circ}C$~130$0^{\circ}C$ by $O_2$ and Ar atmosphere. The oxide thickness, surface morphology, and interface characteristic of deposited oxide layers were measurement by ellipsometer, SEM, TEM, AFM, and SIMS. Thickness of oxidation layer was confirmed 50nm and 90nm to with deposition temperature at $1150^{\circ}C$ and $1200{\circ}C$ for dry 4 hours and wet 1 hour, respectively. For the high purity oxidation layer, the necessity of sacrificial oxidation which is etched for the removal of the defeats on the wafer after quickly thermal oxidation was confirmed.

A Fabrication and Characteristic Estimation of Polycrystalline Silicon Structural Layer for Micromachining (미세가공용 다결정 실리콘 구조체의 제작 및 특성 평가)

  • Kim, Hyoung-Dong;Pack, Seung-Ho;Lee, Seong-Jun;Kim, Chul-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1442-1444
    • /
    • 1995
  • In this study, we confirmed that the crystallinity and the mechanical properties of polycrystalline Silicon(poly-Si) deposited on the poly-oxide are better than those of poly-Si on the conventional sacrificial layers that is CVD oxide layer or PSG. But the etch rate of poly-oxide is poor than that of the CVD oxide layer or PSG. Therefore, to make the best use of small stress and fast etch rate, we fabricated the double oxide layer; 10%-thick poly-oxide on 90%-thick CVD oxide or PSG. To estimate structure deformation by stress, we fabricated the test structures; cantilever. bridge and ring/beam structure and estimated by SEM. As the results, all structure is expressed the deformed structure by residual stress(tensile stress) and the deformation of the structure layer on the double oxide layer is small compared with that of the structure layer on the CVD oxide layer or PSG. And, the etch rate of the double oxide layer is enhanced compared with that of the poly-oxide.

  • PDF

Strained Ge Light Emitter with Ge on Dual Insulators for Improved Thermal Conduction and Optical Insulation

  • Kim, Youngmin;Petykiewicz, Jan;Gupta, Shashank;Vuckovic, Jelena;Saraswat, Krishna C.;Nam, Donguk
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.5
    • /
    • pp.318-323
    • /
    • 2015
  • We present a new way to create a thermally stable, highly strained germanium (Ge) optical resonator using a novel Ge-on-dual-insulators substrate. Instead of using a conventional way to undercut the oxide layer of a Ge-on-single-insulator substrate for inducing tensile strain in germanium, we use thin aluminum oxide as a sacrificial layer. By eliminating the air gap underneath the active germanium layer, we achieve an optically insulating, thermally conductive, and highly strained Ge resonator structure that is critical for a practical germanium laser. Using Raman spectroscopy and photoluminescence experiments, we prove that the novel geometry of our Ge resonator structure provides a significant improvement in thermal stability while maintaining good optical confinement.

Synthesis of Microaglae-Capturing Magnetic Microcapsule Using CaCO3 Microparticles and Layer-by-Layer Coating

  • Lee, Young-Hee;Seo, Jung-Cheol;Oh, You-Kwan;Lee, Kyubock
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.376-380
    • /
    • 2018
  • Microalgae produce not only lipids for biodiesel production but also valuable biochemicals which are often accumulated under cellular stress mediated by certain chemicals. While the microcarriers for the application of drug delivery systems for animal cells are widely studied, their applications into microalgal research or biorefinery are rarely investigated. Here we develope dual-functional magnetic microcapsules which work not only as flocculants for microalgal harvesting but also potentially as microcarriers for the controlled release of target chemicals stimulating microalgae to enhance the accumulation of valuable chemicals. Magnetic microcapsules are synthesized by layer-by-layer(LbL) coating of PSS-PDDA on $Fe_3O_4$ nanoparticle-embedded $CaCO_3$ microparticles followed by removing $CaCO_3$ sacrificial templates. The positively charged magnetic microcapsules flocculate microalgae by electrostatic interaction which are sequentially collected by the magnetophoretic separation. The microcapsules with a polycationic outer layer provide efficient binding sites for negatively charged microalgae and by that means are further utilized as a chemical-delivery and flocculation system for microalgal research and biorefineries.