• Title, Summary, Keyword: Saccharum spp.

Search Result 2, Processing Time 0.034 seconds

Perspectives on the genomics research of important crops in the tribe Andropogoneae: Focusing on the Saccharum complex

  • Choi, Sang Chul;Chung, Yong Suk;Kim, Changsoo
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.1
    • /
    • pp.1-13
    • /
    • 2016
  • Climate changes are shifting the perception of C4 photosynthetic crops due to their superior adaptability to harsh conditions. The tribe Andropogoneae includes some economically important grasses, such as Zea mays, Sorghum bicolor, Miscanthus spp., and Saccharum spp., representing C4 photosynthetic grasses. Although the Andropogoneae grasses diverged fairly recently, their genomic structures are remarkably different from each other. As previously reported, the family Poaceae shares the pan-cereal duplication event occurring ca. 65 MYA. Since this event, Sorghum bicolor has never experienced any additional duplication event. However, some lineage-specific duplication events were reported in Z. mays and Saccharum spp., and, more recently, it was revealed that a shared allotetraploidization event occurred before the divergence between Miscanthus and Saccharum (but after the divergence from S. bicolor), which provided important clues to those two species having large genome sizes with complicated ploidy numbers. The complex genomic structures of sugarcane and Miscanthus (defined as the Saccharum complex along with some other taxa) have had a limiting effect on the use of their molecular information in breeding programs. For the last decade, genomics-associated technologies have become an important tool for molecular crop breeding (genomics-assisted breeding, GAB), but it has not been directly applied to sugarcane and Miscanthus due to their complicated genome structures. As genomics research advances, molecular breeding of those crops can take advantage of technical improvements at a reasonable cost through comparative genomic approaches. Active genomic research of non-model species using closely related model species will facilitate the improvement of those crops in the future.

Partial Desiccation of Embryogenic Calli Improves Plant Regeneration in Sugarcane (Saccharum Spp.)

  • Desai Neetin Shivajirao;Suprasanna Penna;Bapat Viswas Ananat
    • Journal of Plant Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.229-233
    • /
    • 2004
  • Partial desiccation of embryogenic calli cultures or somatic embryos leads to different physiological changes and maturation of somatic embryos, leading to improved plant regeneration. Embryogenic calli was induced from immature inflorescence segments and young leaf rolls of sugarcane (Saccharum officinarum hybrids CoC-671) on Murashige and Skoog's basal medium enriched with different concentrations of 2,4-D ($1-4\;\cal{mg/l}$), L-glutamine ($100\cal{mg/l}$), malt extract ($100\cal{mg/l}$), casein hydrolysate ($1000\;\cal{mg/l}$) and coconut milk ($5\%$) and solidified with $0.2\%$ gel rite. The embryogenic calli were subjected to desiccation for 1-8 h. Desiccation of the calli for 6-7 h resulted in enhancement of plant regeneration frequency ($83-96\%$) as compared to control ($12\%$). Plantlets exhibited vigorous growth to maturity in the greenhouse. Partial desiccation of embryogenic calli offers as a simple method for improving plant regeneration frequency in sugarcane.