• Title/Summary/Keyword: Saccharomyces cerevisiae Y277-3

Search Result 5, Processing Time 0.045 seconds

Production of Tyrosinase Inhibitor from Saccharomyces cerevisiae (Saccharomyces cerevisiae 로부터 Tyrosinase Inhibitor 의 생산)

  • Jang, In-Taek;Kim, Young-Hun;Kang, Min-Gu;Yi, Sung-Hun;Lim, Sung-Il;Lee, Jong-Soo
    • The Korean Journal of Mycology
    • /
    • v.40 no.1
    • /
    • pp.60-64
    • /
    • 2012
  • Physiological functionalities of culture concentrates from various fungi were investigated. The culture concentrates from Saccharomyces cerevisiae Y277-3 showed the highest tyrosinase inhibitory activity of 42.7%. Among mold physiological functionalities, the culture concentrates from Aspergillus orygae CN20-3-1-4 showed the highest antioxidant activity of 15.8%. The other functionalities of fungi were very low or not detected. The intracellular tyrosinase inhibitor from Saccharomyces cerevisiae Y277-3, which showed the highest physiological functionalities was maximally produced when the strain was cultured in PD broth at $30^{\circ}C$ for 24 h.

Optimization of Growth Medium and Fermentation Conditions for the Production of Laccase3 from Cryphonectria parasitica Using Recombinant Saccharomyces cerevisiae

  • Jeong, Yong-Seob;Sob, Kum-Kang;Lee, Ju-Hee;Kim, Jung-Mi;Chun, Gie-Taek;Chun, Jeesun;Kim, Dae-Hyuk
    • Mycobiology
    • /
    • v.47 no.4
    • /
    • pp.512-520
    • /
    • 2019
  • Statistical experimental methods were used to optimize the medium for mass production of a novel laccase3 (Lac3) by recombinant Saccharomyces cerevisiae TYEGLAC3-1. The basic medium was composed of glucose, casamino acids, yeast nitrogen base without amino acids (YNB w/o AA), tryptophan, and adenine. A one-factor-at-a-time approach followed by the fractional factorial design identified galactose, glutamic acid, and ammonium sulfate, as significant carbon, nitrogen, and mineral sources, respectively. The steepest ascent method and response surface methodology (RSM) determined that the optimal medium was (g/L): galactose, 19.16; glutamic acid, 5.0; and YNB w/o AA, 10.46. In this medium, the Lac3 activity (277.04 mU/mL) was 13.5 times higher than that of the basic medium (20.50 mU/mL). The effect of temperature, pH, agitation (rpm), and aeration (vvm) was further examined in a batch fermenter. The best Lac3 activity was 1176.04 mU/mL at 25 ℃, pH 3.5, 100 rpm, and 1 vvm in batch culture.

Cloning and Characterization of a Glyoxalase I Gene from the Osmotolerant Yeast Candida magnoliae

  • Park, Eun-Hee;Lee, Dae-Hee;Seo, Jin-Ho;Kim, Myoung-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.3
    • /
    • pp.277-283
    • /
    • 2011
  • Glyoxalase I catalyzes the conversion of methylglyoxal to S-D-lactoylglutathione in the presence of glutathione. The structural gene of glyoxalase I (GLO1) was cloned from an osmotolerant yeast, Candida magnoliae, which produces a functional sweetener, erythritol, from sucrose. DNA sequence analysis revealed that the uninterrupted open reading frame (ORF) of C. magnoliae GLO1 (CmGLO1) spans 945 bp, corresponding to 315 amino acid residues, and shares 45.2% amino acid sequence identity to Saccharomyces cerevisiae Glo1. The cloned ORF in a multicopy constitutive expression plasmid complemented the glo1 mutation of S. cerevisiae, confirming that it encodes Glo1 in C. magnoliae. The responses of CmGLO1 to environmental stresses were different from those of S. cerevisiae, which only responds to osmotic stress. An enzyme activity assay and reverse transcription polymerase chain reaction revealed that the expression of CmGLO1 is induced by stress inducers such as methylglyoxal, $H_2O_2$, KCl, and NaCl. The GenBank Accession No. for CmGLO1 is HM000001.

Zymological characteristics of Cheju folk wine made of foxtail millet (제주토속 좁쌀약주의 약조특성)

  • Koh, Jeong-Sam;Yang, Young-Taek;Ko, Young-Hwan;Kang, Yeung-Joo
    • Applied Biological Chemistry
    • /
    • v.36 no.4
    • /
    • pp.277-283
    • /
    • 1993
  • In order to brew foxtail millet wine, a folk wine of Cheju, properties of raw materials, optimum brewing conditions were inveatigated. Carbohydrate and crude fat content of glutinuous foxtail millet are 71.27% and 3.47%, respectively. Since the ratio of water to steamed millet and ethanol concentration of wine showed negative correlation, less than 250% water had to added to steamed millet to maintain ethanol concentration in wine above 13%, Sugar consumption and ethanol production increased rapidly for the first 2 days, and main fermentation was done in 4 days. Ethanol concentrations were $13.0{\sim}13.4%$ when foxtail millet was used, and they were $14.0{\sim}14.3%$ for the mixture substrates of 90% millet and 10% rice or barley. Organic acids in millet wine were lactic acid, malic acid and succinic acid. The residual carbohydrates after fermentation were mainly xylose and oligosaccharides. A trace of methanol was detected in millet wine. The content of fusel oil was low, while the concnetration of organic acids was high. Optimum conditions for millet wine-making were as follows. Glutinuous foxtail millet with 10% rice as fermentation source need to be soaked in water and steamed for enough time. Water was added to steamed millet with the ratio of 2 : 1. The resulting mixture was stmnultaneously saccharified and fermented by Aspergillus orzae and Saccharomyces cerevisiae IAM 4274 at $20^{\circ}C$ for a week. Millet wine was prepared after filtering fermented broth while pressing for a week.

  • PDF