• Title/Summary/Keyword: Sac Chamber

Search Result 15, Processing Time 0.023 seconds

Effect of the Pressure and the Flow Pattern in a Sac Chamber of a Diesel Injection Nozzle on the Issued Spray Behaviors (디젤 연료분사노즐 색크실내의 압력과 유동패턴이 분류의 분열거동에 미치는 영향)

  • 김장헌;송규근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.48-53
    • /
    • 2000
  • The effects of the internal flow in a diesel injection nozzle on the atomization of the spray has been investigated experimentally. Flow visualization was made using a transparent acrylic model nozzle. And also, measurement of the sac chamber pressure was made for clartfying the effect of pressure fluctuation in the sac chamber on the wpray behaviors. The geometry of the model nozzle was scaled up 10 times of the actual nozzle and the injection pressure for the model nozzle was adjusted so as to achieve a Reynolds number at the discharge hole which was the same as the actual nozzle. Polystyrene tracers, a laser sheet light and a still/high speed video camera were used to visualize the flow pattern in the sac chamber. When the needle lift was small, the high turbulence in the sac chamber generated by the high velocity seat flow made the spread angle of the spray large. Cavitation which arose in the sky chamber induced the pressure fluctuation and then affects the spread angle of the spray.

  • PDF

Visualization of the Flow in a Diesel Injection Nozzle In case of the Steady Flow Condition (정상류 조건에서의 디젤 연료 분사 노즐내의 유동가시화)

  • 김장헌;송규근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.49-56
    • /
    • 1999
  • The effects of the internal flow in a D.I. Diesel injection nozzle on the atomization of a spray were analyzed experimentally. Flow visualization studies were made using a transparent acrylic model nozzle as a diesel nozzle . Water instead of disel fuel was used as the injection liquid. The geometry of the model nozzle was scaled up 10 times of the actual nozzle and the injection pressure for the model nozzle was adjusted so as to achieve a Reynolds number at the discharge hole that was the same as the actual nozzle. Experimental results show that when the needle lift was small, the high turbulence in the sac chamber generated by the high velocity seat flow made the spread angle of the spray plume large. Cavitation, which arose from the sac chamber, makes the spread angle of the spray plume large but the discharge coefficient small.

  • PDF

Comparison of Correlation Algorithms between GTEM Cell and Semi-Anechoic Chamber (GTEM 셀과 전자파 반-무반사실 사이의 상관관계 알고리즘 비교.분석)

  • 권종화;이애경;최형도
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.2
    • /
    • pp.188-195
    • /
    • 2002
  • This paper statistically verifies two correlation algorithms by comparing the data of GTEM cell to those of semi-anechoic chamber (SAC). Correlation algorithms considered in this paper are 3 and 15 position methods, which simulate the EMI test for an equipment under test (EUT) over the ground plane by using the radiated power from EUT located within GTEM cell. Also, the results obtained by two algorithms are compared with the theoretical values calculated from an ideal dipole model. From the results, it was found that the data obtained by two correlation algorithms and SAC have a strong correlation. In addition, the EMI data by 3 position method showed higher than those by 15 position method and SAC measurements.

Macroscopic Characteristics of Evaporating Dimethyl Ether(DME) Spray (Dimethyl Ether(DME)의 증발과 거시적 분무 특성)

  • Yu, Jun;Lee, Ju-Kwang;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.58-64
    • /
    • 2003
  • Dimethyl Ether(DME) has been considered as one of the most attractive alternative fuels for compression ignition engine. Its main advantage in diesel engine application is high efficiency of diesel cycle with soot free combustion though conventional fuel injection system has to be modified due to the physical properties of DME. Experimental study of DME and conventional diesel spray employing a common-rail type fuel injection system with a 5-hole sac type injector was performed in a constant volume vessel pressurized by nitrogen gas. Spray cone angles and penetrations of the DME spray were characterized and compared with those of diesel. For evaluation of the evaporating characteristics of the DME, shadowgraphy technique employing an Ar-ion laser and an ICCD camera was adopted. Tip of the DME spray was formed in mushroom-like shape at atmospheric chamber pressure, which disappeared in higher chamber pressure. Spray tip penetration and spray cone angle of the DME became similar to those of diesel under 3MPa of chamber pressure. Higher injection pressure provided wider vapor phase area while it decreased with higher chamber pressure condition.

Comparison of Macroscopic Spray Characteristics of Dimethyl Ether with Diesel (Dimethyl Ether와 디젤의 거시적 분무 특성 비교)

  • Yu, J.;Lee, J. K.;Bae, C. S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.73-80
    • /
    • 2002
  • Dimethyl ether (DM) is one of the most attractive alternative fuel far compression ignition engine. Its main advantage in diesel engine application is high efficiency of diesel cycle with soot free combustion though conventional fuel injection system has to be modified due to the intrinsic properties of DME. Experimental study of DME and conventional diesel spray employing a common-rail type fuel injection system with a 5-holes sac type injector (hole diameter 0.168 ㎜/hole) was performed in a high pressure chamber pressurized with nitrogen gas. A CCD camera was employed to capture time series of spray images followed by spray cone angles and penetrations of DME were characterized and compared with those of diesel. Under atmospheric pressure condition, regardless of injection pressure, spray cone angles of the DME were wider than those of diesel and penetrations were shorter due to flash boiling effect. Tip of the DME spray was farmed in mushroom like shape at atmospheric chamber pressure but it was disappeared in higher chamber pressure. On the contrary, spray characteristics of the DME became similar to that of diesel under 3MPa of chamber pressure. Hole-to-hole variation of the DME spray was lower than that of diesel in both atmospheric and 3MPa chamber pressures. At 25MPa and 40MPa of DME injection pressures, regardless of chamber pressure, intermittent DME spray was observed. It was thought that vapor lock inside the injector was generated under the two injection pressures.

An Anatomical and Histochemical Study of the Olfactory Organ in Rice-fish Oryzias sinensis(Pisces: Adrianichthyidae) in South Korea (한국산 대륙송사리 Oryzias sinensis(Pisces: Adrianichthyidae) 후각기관의 해부 및 조직화학적 연구)

  • Kim, Hyun Tae;Lee, Yong Joo;Park, Jong Young
    • Korean Journal of Ichthyology
    • /
    • v.28 no.4
    • /
    • pp.223-228
    • /
    • 2016
  • The anatomy and histology of the olfactory organ in Oryzias sinensis was researched using a stereo microscope and light microscope. In the gross structure, the paired olfactory organs on the dorsal part of the head consist of two nostrils (a circular anterior nostril and a slit posterior nostril in a distance), a single olfactory chamber and a single accessory nasal sac. In the histological study, the epithelium of the olfactory chamber is classified into both sensory and non-sensory regions. The sensory epithelium consists of olfactory receptor neurons, supporting cells, basal cells and vesicles, and is islet in distributional pattern. The non-sensory epithelium is composed of stratified epithelial cells and two types of mucous cells (acidic and neutral cells). The epithelium of the accessory nasal sac has swollen stratified epithelial cells, mucous cells with a rich glycoprotein. Such an olfactory anatomy and histology of O. sinensis may reflect its habitat surrounding stagnant and polluted water.

Suggested and Preferred Amount of Clothing in a Winter Indoor Condition

  • Shim, Huen-Sup;Jeong, Woon-Seon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.35 no.12
    • /
    • pp.1418-1424
    • /
    • 2011
  • This study proposes the suggested amount of clothing (SAC) and examines the preferred amount of clothing (PAC) for thermal comfort in mild cold conditions. Six male and nine female college students were systematically exposed to mild cold conditions by reducing the amount of clothing (Step I, 1.2clo ${\rightarrow}$ Step II, 1.0clo ${\rightarrow}$ Step III, 0.8clo ${\rightarrow}$ Step IV, 0.7clo). The subjects were then asked to adjust the amount of clothing to attain overall thermal comfort until they maintained thermal comfort for 10 minutes without changing the amount of clothing (Step V). The experiment was carried out in a climatic chamber at $19.5^{\circ}C$, 50%R.H. Body composition was measured and individual cold climate adaptability was surveyed before starting the experiment. Rectal temperature ($T^{re}$), skin temperature ($T_{sk}$), and oxygen consumption ($\dot{V}O_2$) were measured and the overall thermal sensation was voted in each step. PAC was obtained from the garments weight selected by each subject in Step V. SAC was proposed based on the change of oxygen consumption (${\Delta}\dot{V}O_2$). As a result, males showed higher $\bar{T}_{sk}$ and greater $O_2$ than females (p<.01). SAC obtained from $\dot{V}O_2$ were 652.0 (SE 3.9) g/$m^2$ for males and 766.0 (SE 2.5) g/$m^2$ for females and it was significantly different between groups (p<.01). PAC of males and females were 1.6 and 1.5 times heavier than SAC. In conclusion, females were more sensitive to the cold stress and recommended larger amount of clothing than males.

Functional Anatomy and Histology of the Olfactory Organ in Korean Eel Goby, Odontamblyopus lacepedii (Pisces: Gobiidae)

  • Kim, Hyun Tae;Lee, Yong Joo;Park, Jong Young
    • Applied Microscopy
    • /
    • v.48 no.1
    • /
    • pp.11-16
    • /
    • 2018
  • For Odontamblyopus lacepedii with small and turbid eyes, the gross structure and histology of the olfactory organ, which is important for its survival and protection of the receptor neuron in estuarial environment and its ecological habit, was investigated using a stereo, light and scanning electron microscopes. Externally, the paired olfactory organs with two nostrils are located identically on each side of the snout. These nostrils are positioned at the anterior tip of the upper lip (anterior nostril) and just below eyes covered with the epidermis (posterior nostril). Internally, this is built of an elongated olfactory chamber and two accessory nasal sacs. In histology, the olfactory chamber is elliptical in shape, and lined by the sensory epithelium and the non-sensory epithelium. The sensory epithelium of a pseudostratified layer consists of olfactory receptor neurons, supporting cells, basal cells and lymphatic cells. The non-sensory epithelium of a stratified layer has swollen stratified epithelial cells and mucous cells with acidic and neutral sulfomucin. From these results, we confirmed the olfactory organ of O. lacepedii is adapted to its ecological habit as well as its habitat with burrows at the muddy field with standing and murky waters.

Evaluation of Electrohydraulic Left Ventricular Assist Device through Animal Experiment (동물실험을 통한 전기유압식 좌심실 보조장치의 성능 평가)

  • Choi, J.S.;Chung, C.I.;Choi, W.W.;Park, S.K.;Jo, Y.H.;Om, K.S.;Lee, J.J.;Won, Y.S.;Kim, H.C.;Kim, W.G.;Min, B.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.84-87
    • /
    • 1996
  • We have been developed electrohydraulic left ventricular assist device and done various in vivo evaluation on the device. Through the in vivo experiment conducted from Jan. 23, 1996 to Feb. 8, we could have experience of long-term evaluation fur the first time. The sheep used in this experiment had survived for 16 days. We used new actuator with reduced size and linear motion guide replacing oil box and ball bearings. Also, we used improved blood chamber with reduced size, reduced weight facilitating fixing the chamber to animal's body, and polymer sac having improved folding pattern. Against suction problem, we used absolute pressure limiter only. Motor current for driving this new actuator was not much higher than older one. Effective stroke volume was about 48 cc. Thrombosis was found around top area and peripheral boundary of the sac and valves. There was no sign of damage from suction problem in the atrium observed at autopsy. Main cause of death was presumed to be progressive formation of thrombosis in the cannulae. In this paper, the results of this experiment are documented.

  • PDF

Development of Osmotic Infusion Pump (삼투압 약물주입 펌프의 개발)

  • Kim, Dong Sun;Choi, Seong Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.6
    • /
    • pp.471-475
    • /
    • 2015
  • Because of increasing demand, a small portable drug injector that uses osmotic pressure for its operation force is developed, and its performance is evaluated. The osmotic drug injector can be small and lightweight because it does not require heavy batteries and an actuator, unlike previous electromechanical drug injectors. Moreover, its injection pressure can be sustained longer than that of previous elastic drug injectors. The new device is composed of a drug sac, osmotic pressure chamber, semipermeable membrane, and solvent chamber. To evaluate its performance, an in-vitro experiment was designed to measure the outflow and the injection pressure with respect to time. The experimental results show that the new drug infuser can continuously deliver 20 ml drug over a period of 20 h. The maximum injecting pressure was over 400 mmHg. Which prevents backflow caused by changes in the outlet pressure resulting from changes to the position of the device and the patient's posture.