• Title/Summary/Keyword: SYSWELD

Search Result 18, Processing Time 0.029 seconds

Welding Technology for the Process Optimization by the Computer Code SYSWELD (SYSWELD를 이용한 용접 프로세스 제어 기술)

  • 이재경;이기훈
    • Journal of Welding and Joining
    • /
    • v.15 no.1
    • /
    • pp.36-45
    • /
    • 1997
  • 용접 구조물에 대한 프로세스 제어를 위하여 매우 효과적인 수단이 될 수 있는 SYSWELD 소프트웨어의 이론적인 개념 및 응용 기술에 대하여 소개하였다. 전술한 바와 같이 SYSWELD는 일반적으로 알려져 있는 범용 열 및 구조해석 상용 Code와는 달리 야금학적 이론이 접목되므로써 이전에는 고려하기 곤란했던 제어 인자들에 대하여 보다 정확한 정보를 얻을 수 있기 때문에 용접 프로세스 분야에 매우 적합한 시뮬레이션 Code라고 판단된다. 이와 같이 수치해석 기술을 응용함으로써 연구기관에서는 제반 현상들에 대하여 실험적인 접근방법보다 보다 효과적으로 이해할 수 있게 되어 궁극적으로 이론적 발전 및 실용화를 이룰 수 있으며, 또한 산업체에서는 현업에서 발생하는 결함의 제어 및 구조물이나 프로세스의 최적 설계 방안을 수립하는 일이 가능하기 때문에, 현재 용접 분야에 대한 컴퓨터 시뮬레이션 응용 기술에 대하여 관심이 집중되고 있다. 이에 당사는 SYSWELD를 비롯하여 공학 분야의 유용한 상용 Code에대한 공급 및 기술 지원 뿐만 아니라 엔지니어링 능력을 갖추고 이와 같은 추세에 부응하고자 하는 노력중에 있는 바, 용접 시뮬레이션 응용 기술에 대한 현황을 소개하고자 하였으므로 참고가 되기를 바란다.

  • PDF

Prediction of Cr Content in the Martensitic-hardfaced Weldment Utilizing Dilution Rate Analytically Estimated (마르텐사이트계 경화 육성용접부의 희석율 해석을 통한 Cr함량 예측에 대한 연구)

  • Kim, Bong-Hun;Kim, Chun-Hwan
    • Journal of Welding and Joining
    • /
    • v.32 no.6
    • /
    • pp.14-21
    • /
    • 2014
  • High-temperature corrosion resistance of martensitic-hardfaced weldment is generally evaluated by the Cr content depending on dilution rate. Present study used a commercial program(SYSWELD) applying three-dimensional heat flow analysis to predict temperature distribution of weld. Configuration of weld bead can be determined by the contour of melting temperature and simultaneously dilution rate is calculated to predict Cr content. Experimental study also has been conducted to measure Cr content of harfaced surface welded by FCAW. Results indicated that computational results were well matched with those obtained from experiments.

Application for parallel computation for finite element analysis of welding processes (용접공정 유한요소 해석의 병렬 처리 적용)

  • 임세영;김주완;최강혁
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.273-275
    • /
    • 2004
  • A parallel multi-frontal solver is developed for finite element analysis of an arc-welding process, which entails phase evolution, heat transfer, and deformations of structure. We verify the code via comparison to a commercial code,SYSWELD. Attention is focused on the implementation of the parallel solver using MPI library, on the speedup by parallel computation, and on the effectiveness of the solver in welding application

  • PDF

Finite Element Analysis considering transformation plasticity for a welded structure (변태 소성을 고려한 용접 구조물의 유한 요소 해석)

  • 김주완;임세영
    • Proceedings of the KWS Conference
    • /
    • 2001.10a
    • /
    • pp.116-118
    • /
    • 2001
  • We propose an implicit numerical implementation for Leblond's transformation plasticity constitutive equations , which are widely used in welded steel structure. We apply Euler backward scheme rule to integrate the equations and determine the consistent tangent modulus. The implementation may be used with updated Lagrangian formulation. we test a simple butt-welding process to compare with SYSWELD and discuss the accuracy.

  • PDF

Health Monitoring of Weldment By Post-processing Approach Using Finite Element Analysis (유한요소해석 후처리 기법을 이용한 용접부의 건전성 평가)

  • 이제명;백점기;강성원;김명현
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.32-36
    • /
    • 2002
  • In this paper, a numerical methodology for health monitoring of weldment was proposed using finite element method coupled with continuum damage mechanics. The welding-induced residual stress distribution of T-joint weldment was calculated using a commercial finite element package SYSWELD+. The distribution of latent damage was evaluated from the stress and strain components taken as the output of a finite element calculation. Numerical examples were given to demonstrate the usefulness of this so-called "post-processing approach" in the case of welding-induced damage assessment.

Finite Element Analysis for Three Dimensional Welding Processes (3차원 용접과정의 유한요소해석)

  • Kim, Ju-Wan;Cho, Young-Sam;Kim, Hyun-Gyu;Choi, Kang-Hyouk;Im, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.336-340
    • /
    • 2001
  • We propose an implicit numerical implementation for the Leblond's transformation plasticity constitutive equations, which are widely used in welded steel structure. We apply generalized trapezoidal rule to integrate the equations and determine the consistent tangent moduli. The implementation may be used with updated Lagrangian formulation. We test a simple butt-welding process to compare with SYSWELD and discuss the accuracy.

  • PDF

Residual Stress Analysis of Laser Cladding Repair for Nuclear Steam Generator Damaged Tubes (원전 증기발생기 레이저 클래딩 보수부위 잔류응력 해석)

  • Han, Won-Jin;Lee, Sang-Cheol;Lee, Seon-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.56-60
    • /
    • 2008
  • Laser cladding technology was studied as a method for upgrading the present repair procedures of damaged tubes in a nuclear steam generator and Doosan subsequently developed and designed a new Laser Cladding Repair System. One of the important features of this newly developed Laser Cladding Repair System is that molten metal can be deposited on damaged tube surfaces using a laser beam and filler wire without the need to install sleeves inside the tube. Laser cladding qualification tests on the steam generator tube material, Alloy 600, were performed according to ASME Section IX. Residual stress analyses were performed for weld metal and heat affected zone of as-welded and PWHT with SYSWELD software.

  • PDF

Finite Element Analysis of Multi-Pass Welding Structure (다층용접 구조물의 유한요소해석)

  • Ha, Joon-Wook;Kim, Tae-Woan;Kim, Dong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.730-735
    • /
    • 2000
  • The finite element analysis by the computer program SYSWELD in consideration of phase transformation was carried out to simulate the multi-pass welding process of SA106 Gr. C which is used for the main steam pipe in nuclear power plant. All the numerical results such as temperatures, the size of heat affected zone and the residual stresses were compared to the experimental results.

  • PDF

Analysis of Heat Treatment Process for Large Forgings Considering Phase Transformation (대형 단조품 담금질 과정의 조직 및 응력분포 해석)

  • 이정호;이부윤;전제영;이명렬;조종래
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.964-968
    • /
    • 1996
  • The demands of size and quality of large steel shaft forgings for ship building, power plant, steel plant, etc. are rapidly increasing, and some of these productions are manufactured from ingot weighing more than 300 tons. For use as rotating components. shafts require toughness, strength and homogeneity, and therefore are produced through a variety of heat treatments. According to the increase of ingot size, micro- and macrosegregation and also mass effect of the product increase. Thus, special care should be paid to the heat treatment of such large shaft forgings. In this paper, the heat treatment of large shaft forgings such as rotor and back-up roll is calculated using the commercial finite element code SYSWELD. Calculated distributions of temperature and phase are compared with experimental data. The continuous cooling transformation diagram, thermal and mechanical properites of each phase are used. The phase proportion, hardness and residual stress during water quenching are discussed.

  • PDF