• Title/Summary/Keyword: SWIR band

Search Result 25, Processing Time 0.03 seconds

Optical System Design and Image Processing for Hyperspectral Imaging Systems (초분광 분해기의 광학계 설계 및 영상 처리)

  • Heo, A-Young;Choi, Seung-Won;Lee, Jae-Hoon;Kim, Tae-Hyeong;Park, Dong-Jo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.328-335
    • /
    • 2010
  • A hyperspectral imaging spectrometer has shown significant advantages in performance over other existing ones for remote sensing applications. It can collect hundreds of narrow, adjacent spectral bands for each image, which provides a wealth of information on unique spectral characteristics of objects. We have developed a compact hyperspectral imaging system that successively shows high spatial and spectral resolutions and fast data processing performance. In this paper, we present an overview of the hyperspectral imaging system including the strucure of geometrical optics and several image processing schemes such as wavelength calibration and noise reduction for image data on Visible and Near-Infrared(VNIR) and Shortwave-Infrared(SWIR) band.

Effects of Shortwave Infrared Bands of ASTER and ETM+ for Assessing Vegetative Information

  • Lee, Kyu-Sung;Jang, Ki-Chang;Kim, Sun-Hwa;Park, Yoon-Il;Ryu, Joung-Mi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1027-1029
    • /
    • 2003
  • The primary uses of SWIR bands of ASTER data are to analyze geological features. In this study, we are attempting to evaluate the effect of using the narrow band A STER data for extracting information related to biophysical information of forest vegetation. ASTER and ETM+ data have been obtained simultaneously over the study area in Kyongan-River basin on May 8, 2003. Two data sets were initially processed to reduce atmospheric effects and converted to percent reflectance values, which make them comparable each other. ASTER and ETM+ reflectance were then analyzed by using the field survey data that include forest leaf area index (LAI), cover types, species composition, and stand density. Preliminary results show that ASTER reflectance were not much different to ETM+ reflectance to explain LAI.

  • PDF

Methodology to Apply Low Spatial Resolution Optical Satellite Images for Large-scale Flood Mapping (대규모 홍수 매핑을 위한 저해상도 광학위성영상의 활용 방법)

  • Piao, Yanyan;Lee, Hwa-Seon;Kim, Kyung-Tak;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.5
    • /
    • pp.787-799
    • /
    • 2018
  • Accurate and effective mapping is critical step to monitor the spatial distribution and change of flood inundated area in large scale flood event. In this study, we try to suggest methods to use low spatial resolution satellite optical imagery for flood mapping, which has high temporal resolution to cover wide geographical area several times per a day. We selected the Sebou watershed flood in Morocco that was occurred in early 2010, in which several hundred $km^2$ area of the Gharb lowland plain was inundated. MODIS daily surface reflectance product was used to detect the flooded area. The study area showed several distinct spectral patterns within the flooded area, which included pure turbid water and turbid water with vegetation. The flooded area was extracted by thresholding on selected band reflectance and water-related spectral indices. Accuracy of these flooding detection methods were assessed by the reference map obtained from Landsat-5 TM image and qualitative interpretation of the flood map derived. Over 90% of accuracies were obtained for three methods except for the NDWI threshold. Two spectral bands of SWIR and red were essential to detect the flooded area and the simple thresholding on these bands was effective to detect the flooded area. NIR band did not play important role to detect the flooded area while it was useful to separate the water-vegetation mixed flooded classes from the purely water surface.

High Performance of SWIR HgCdTe Photovoltaic Detector Passivated by ZnS

  • Lanh, Ngoc-Tu;An, Se-Young;Suh, Sang-Hee;Kim, Jin-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.128-132
    • /
    • 2004
  • Short wave infrared (SWIR) photovoltaic devices have been fabricated from metal organic vapour phase epitaxy (MOVPE) grown n- on p- HgCdTe films on GaAs substrates. The MOVPE grown films were processed into mesa type discrete devices with wet chemical etching employed for meas delineation and ZnS surface passivatlon. ZnS was thermally evaporated from effusion cell in an ultra high vacuum (UHV) chamber. The main features of the ZnS deposited from effusion cell in UHV chamber are low fixed surface charge density, and small hysteresis. It was found that a negative flat band voltage with -0.6 V has been obtained for Metal Insulator Semiconductor (MIS) capacitor which was evaporated at $910^{\circ}C$ for 90 min. Current-Voltage (I-V) and temperature dependence of the I-V characteristics were measured in the temperature range 80 - 300 K. The Zero bias dynamic resistance-area product ($R_{0}A$) was about $7500{\Omega}-cm^{2}$ at room temperature. The physical mechanisms that dominate dark current properties in the HgCdTe photodiodes are examined by the dependence of the $R_{0}A$ product upon reciprocal temperature. From theoretical considerations and known current expressions for thermal and tunnelling process, the device is shown to be diffusion limited up to 180 K and g-r limited at temperature below this.

Relationship between Growth Factors and Spectral Characteristics of Satellite Imagery in Korea

  • Park, Ji-Hoon;Ma, Jung-Lim;Nor, Dae-Kyun;Kim, Chan-Hoi;Hwang, Hyo-Tae;Jung, Jin-Hyun;Kim, Sung-Ho;Jo, Hyeon-Kook;Lee, Woo-Kyun;Chung, Dong-Jun
    • Journal of Forest and Environmental Science
    • /
    • v.24 no.3
    • /
    • pp.165-169
    • /
    • 2008
  • This study attempts to analyze the relationship between forest volume and age based on 5th NFI data and spectral characteristics of satellite imagery using ASTER sensor in Korea. Forest stand volume and age had the negative correlation with the spectral reflectance in all of the band (Blue, Green, Red, SWIR). With increasing of stand volume and age, spectral reflectance decrease. The spectral reflectance of band1 showed the highest correlation between stand volume and spectral reflectance among the VNIR wavelength. The spectral reflectance band 1, 2 (visible wavelength) and stand age have high correlation compared to other bands. The correlation coefficients between forest volume and vegetation indices have low relationship. This result indicates that the reflectance of blue band may be important factor to improve the potential of optical remote sensing data to estimate forest volume and age.

  • PDF

Development of Cloud Detection Method with Geostationary Ocean Color Imagery for Land Applications (GOCI 영상의 육상 활용을 위한 구름 탐지 기법 개발)

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.371-384
    • /
    • 2015
  • Although GOCI has potential for land surface monitoring, there have been only a few cases for land applications. It might be due to the lack of reliable land products derived from GOCI data for end-users. To use for land applications, it is often essential to provide cloud-free composite over land surfaces. In this study, we proposed a cloud detection method that was very important to make cloud-free composite of GOCI reflectance and vegetation index. Since GOCI does not have SWIR and TIR spectral bands, which are very effective to separate clouds from other land cover types, we developed a multi-temporal approach to detect cloud. The proposed cloud detection method consists of three sequential steps of spectral tests. Firstly, band 1 reflectance threshold was applied to separate confident clear pixels. In second step, thick cloud was detected by the ratio (b1/b8) of band 1 and band 8 reflectance. In third step, average of b1/b8 ratio values during three consecutive days was used to detect thin cloud having mixed spectral characteristics of both cloud and land surfaces. The proposed method provides four classes of cloudiness (thick cloud, thin cloud, probably clear, confident clear). The cloud detection method was validated by the MODIS cloud mask products obtained during the same time as the GOCI data acquisition. The percentages of cloudy and cloud-free pixels between GOCI and MODIS are about the same with less than 10% RMSE. The spatial distributions of clouds detected from the GOCI images were also similar to the MODIS cloud mask products.

Modis Maximum NDVI, Minimum Blue, and Average Cloud-free Monthly Composites of Southeast Asia

  • Zerbe, L.;Chia, A.S.;Liew, S.C.;Kwoh, L.K.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.172-174
    • /
    • 2003
  • Using MODIS data and several different compositing algorithms utilizing the average cloud free days in a compositing period, maximum ndvi, or dual maximum NDVI/minimum blue, multi resolution composites (250m, 500m, 1km) have been produced for Southeast Asia, with spectral bands ranging from the visible to short-wave infrared with a single band in the thermal (for land and sea surface temperature). A total of nine composites have been produced for the months of May and August in 2003, including blue, green, red, NIR, three in the SWIR, and several to specifically monitor vegetation health.

  • PDF

JERS-1 SAR DATA CHARACTERISTICS FOR GEOLOGICAL APPLICATIONS

  • Moon, Wooil-M.;Li, Bo;Won, J.S.;Yoo, H.W.;Singhroy, V.;Yamaguch, Y.
    • Korean Journal of Remote Sensing
    • /
    • v.10 no.2
    • /
    • pp.161-170
    • /
    • 1994
  • The JERS-1 is an Earth Resources Satellite launched by NASDA (Natinal Space Development Agency) of Japan, in February in 1992 and has two sensors; SAR(L-Band Synthetic Aperture Radar) and OPS (SWIR and VNIR radiometers). In this research note, the basic properties and data characteristics of the SAR data are summarized based on the observations made on the data sets received for the Nahanni Canadian test site, Northwest Territories. The JERS-1 SAR data quality. including the spatial resolution of the data, is, in general, excellent for most geological applications.

Analysis of Landslide locations using Spectral Reflectance of Clay Mineral and ASTER Satellite Image (점토광물의 분광반사율 및 ASTER 위성영상을 이용한 산사태 발생지역 분석)

  • Nam, Koung-Hoon;Lee, Hong-Jin;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.24 no.3
    • /
    • pp.411-421
    • /
    • 2014
  • The purpose of this study is to analyze the key factors that contribute to landslide causes through swelling clay minerals and terrain analysis in landslide sites taken place of in Yongin city, Gyeonggi-do, 2011. The study was conducted based on field survey by XRD (X-ray Diffraction), XRF (X-ray fluorescence), spectroscopic analysis on soil samples obtained from landslide sites and ASTER satellite image. Illite shows absorption features; $Fe^{2+}$ and $Fe^{3+}$ at 0.9 and $1.0{\mu}m$, broad water absorption features near 1.4 and $1.9{\mu}m$, and additional Al-hydroxyl features at 2.2, 2.3 and $2.4{\mu}m$, respectively. These absorption features are consistent with the bands 5, 6, and 7 of ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) satellite image. Illite image was extracted using band math of $SWIR_{Illite}$. From these results, we confirmed the applicability of ASTER satellite image using identification of swelling clay minerals to landslide study.

OBSERVATION OF SPECTRAL CHARACTERISTICS FOR SOIL CONTAMINANTS

  • Choe Eun-Young;Kim Kyoung-Woong;Lee Sung-Soon;Chi Kwang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.422-425
    • /
    • 2005
  • Spectral characteristics depending on soil constituents and their proportion in a soil were firstly studied for monitoring of soil contamination using hyperspectral remote sensing. The reflectance spectra of heavy metals in soils were investigated in the VIS-NIR-SWIR regions (400-2500 nm) to observe spectral variation as a function of constituents and concentrations. Commercial kaolinite soils mixed with lead, copper, arsenic, and cadmium were used as synthetic soil samples for spectral measurement. In case of copper, relatively spectrally active regions was observed with some band shift whereas other heavy metals had only simple spectral variations expected to be related to the sorption phase and the amount of metal onto kaolinite. The reflectance spectrum of each metal on kaolinite could be identified in VIS-NIR region.

  • PDF