• Title/Summary/Keyword: SWCNTs

Search Result 147, Processing Time 0.025 seconds

Preparation of Bucky Paper using Single-walled Carbon Nanotubes Purified through Surface Functionalization and Investigation of Their Field Emission Characteristics (기능화에 의한 단일벽 탄소나노튜브 정제 및 페이퍼 제조와 전계방출 특성 연구)

  • Goak, Jeung-Choon;Lee, Seung-Hwan;Lee, Han-Sung;Lee, Nae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.5
    • /
    • pp.402-410
    • /
    • 2008
  • Single-walled carbon nanotubes (SWCNTs) were currently produced together with some contaminants such as a metallic catalyst, amorphous carbon, and graphitic nanoparticles, which should be sometimes purified for their applications. This study aimed to develop efficient, scalable purification processes but less harmful to SWCNTs. We designed three-step purification processes: acidic treatment, surface functionalization and soxhlet extraction, and heat treatment. During the soxhlet extraction using tetrahydrofuran, specifically, carbon impurities could be easily expelled through a glass thimble filter without any significant loss of CNTs. Finally, SWCNTs were left as a bulky paper on the filter through membrane filtration. Vertically aligned SWCNTs on one side of bulky paper were well developed in a speparation from the filter paper, which were formed by being sucked through the filter pores during the pressurized filtration. The bucky paper showed a very high peak current density of field emission up to $200\;mA/cm^2$ and uniform field emission images on phosphor, which seems very promising to be applied to vacuum microelectronics such as microwave power amplifiers and x-ray sources.

Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity

  • Hussain, Muzamal;Naeem, Muhammad Nawaz;Tounsi, Abdelouahed;Taj, Muhammad
    • Advances in nano research
    • /
    • v.7 no.6
    • /
    • pp.431-442
    • /
    • 2019
  • Vibration analysis of carbon nanotubes (CNTs) is very essential field owing to their many promising applications in tiny instruments. In current study, the Eringen's nonlocal elasticity theory with clamped-clamped and clamped-free end conditions is utilized for the vibration analysis of armchair and zigzag SWCNTs. The Fourier method is utilized to solve the ordinary differential equation. The motion equation for this system is developed using a novel wave propagation method. Complex exponential functions have been used and the axial model depends on BCs that has been described at the edges of CNTs. The behavior of different nonlocal parameters is considered to find the vibrational frequency of SWCNTs. It is exhibited that the effect of frequencies against aspect ratio by varying the bending rigidity. It has been investigated that by increasing the nonlocal parameter decreases the frequencies and on increasing the aspect ratio increases the frequencies for both the tubes. To generate the fundamental natural frequencies of SWCNTs, computer software MATLAB engaged. The numerical results are validated with existing open text. Since the percentage of error is negligible, the model has been concluded as valid.

Composite action in connection of single-walled carbon nanotubes: Modeled as Flügge shell theory

  • Mohamed A. Khadimallah;Imene Harbaoui;Sofiene Helaili;Abdelhakim Benslimane;Humaira Sharif;Muzamal Hussain;Muhammad Nawaz Naeem;Mohamed R. Ali;Aqib Majeed;Abdelouahed Tounsi
    • Computers and Concrete
    • /
    • v.32 no.4
    • /
    • pp.365-371
    • /
    • 2023
  • On the basis of Flügge shell theory, the vibrations of single walled carbon nanotubes (SWCNTs) are investigated. The structure of armchair single walled carbon nanotubes are used here. Influences of length-to-diameter ratios and the two boundary conditions on the natural frequencies of armchair SWCNTs are examined. The Rayleigh-Ritz method is employed to determine eigen frequencies for single walled carbon nanotubes. The solution is obtained using the geometric characteristics and boundary conditions for natural frequencies of SWCNTs. The natural frequencies decrease as ratio of length to diameter increase and the effect of frequencies is less significant and more prominent for long tube. To assess the frequency confirmation carried out in this paper are compared with the earlier computations.

Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach

  • Eltaher, Mohamed A.;Almalki, Talaal A.;Ahmed, Khaled I.E.;Almitani, Khalid H.
    • Advances in nano research
    • /
    • v.7 no.1
    • /
    • pp.39-49
    • /
    • 2019
  • This paper focuses on two main objectives. The first one is to exploit an energy equivalent model and finite element method to evaluate the equivalent Young's modulus of single walled carbon nanotubes (SWCNTs) at any orientation angle by using tensile test. The calculated Young's modulus is validated with published experimental results. The second target is to exploit the finite element simulation to investigate mechanical buckling and natural frequencies of SWCNTs. Energy equivalent model is presented to describe the atomic bonding interactions and their chemical energy with mechanical structural energies. A Program of Nanotube modeler is used to generate a geometry of SWCNTs structure by defining its chirality angle, overall length of nanotube and bond length between two adjacent nodes. SWCNTs are simulated as a frame like structure; the bonds between each two neighboring atoms are treated as isotropic beam members with a uniform circular cross section. Carbon bonds is simulated as a beam and the atoms as nodes. A finite element model using 3D beam elements is built under the environment of ANSYS MAPDL environment to simulate a tensile test and characterize equivalent Young's modulus of whole CNT structure. Numerical results are presented to show critical buckling loads, axial and transverse natural frequencies of SWCNTs with different orientation angles and lengths. The understanding of mechanical behaviors of CNTs are essential in developing such structures due to their great potential in wide range of engineering applications.

Fabrication of Carbon Nanotube Strain Sensors (카본나노튜브 스트레인 센서 제작 기술)

  • Chang, Won-Seok;Song, Sun-Ah;Kim, Jae-Hyun;Han, Chang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.10
    • /
    • pp.773-777
    • /
    • 2009
  • In this study, the strain sensing characteristics of single-wall carbon nanotubes(SWCNTs) networks were investigated to develop a film sensor for strain sensing. The SWCNTs film are formed on flexible substrates of poly(ethylene terephthalate) (PET) using spray process. In this manner we could control the transparency and obtain excellent uniformity of the networked SWCNT film. The carbon nanotube film is isotropic due to randomly oriented bundles of SWCNTs. Using experimental results it is shown that there is a nearly linear change in resistance across the film when it is subjected to tensile stress. The results presented in this study indicate the potential of such films for high sensitive transparent strain sensors on macro scale.

Vibration and instability of nanocomposite pipes conveying fluid mixed by nanoparticles resting on viscoelastic foundation

  • Natanzi, Abolfazl Jafari;Jafari, Gholamreza Soleimani;Kolahchi, Reza
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.569-582
    • /
    • 2018
  • In this study, nonlinear vibration and stability of a polymeric pipe reinforced by single-walled carbon naotubes (SWCNTs) conveying fluid-nanoparticles mixture flow is investigated. The Characteristics of the equivalent composite are determined using Mori-Tanaka model considering agglomeration effects. The surrounding elastic medium is simulated by orthotropic visco-Pasternak medium. Employing nonlinear strains-displacements, stress-strain energy method the governing equations were derived using Hamilton's principal. Differential quadrature method (DQM) is used for obtaining the frequency and critical fluid velocity. The influence of volume percent of SWCNTs, agglomeration, geometrical parameters of pipe, viscoelastic foundation and fluid velocity are shown on the frequency and critical fluid velocity of pipe. Results showed the increasing volume percent of SWCNTs leads to higher frequency and critical fluid velocity.

Correlation between frequency and Poisson's ratio: Study of durability of armchair SWCNTs

  • Muzamal Hussain;Mohamed A. Khadimallah;Abdelouahed Tounsi
    • Computers and Concrete
    • /
    • v.32 no.3
    • /
    • pp.303-311
    • /
    • 2023
  • An analysis of the Poisson's ratios influence of single walled carbon nanotubes (SWCNTs) based on Sander's shell theory is carried out. The effect of Poisson's ratio, boundary conditions and different armchairs SWCNTs is discussed and studied. The Galerkin's method is applied to get the eigen values in matrix form. The obtained results shows that, the decrease in ratios of Poisson, the frequency increases. Poisson's ratio directly measures the deformation in the material. A high Poisson's ratio denotes that the material exhibits large elastic deformation. Due to these deformation frequencies of carbon nanotubes increases. The frequency value increases with the increase of indices of single walled carbon nanotubes. The prescribe boundary conditions used are simply supported and clamped simply supported. The Timoshenko beam model is used to compare the results. The present method should serve as bench mark results for agreeing the results of other models, with slightly different value of the natural frequencies.

Role of Aluminum Top-layer on Synthesis of Carbon Nanotubes using Laminated Catalyst(Al/Fe/Al) layer (적층구조 촉매층(Al/Fe/Al)을 이용한 탄소나노튜브의 합성에서 최상층 알루미늄 층의 역할)

  • Song, W.;Choi, W.C.;Jeon, C.;Ryu, D.H.;Lee, S.Y.;Shin, Y.S.;Park, C.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.5
    • /
    • pp.377-382
    • /
    • 2007
  • In this study, we report the synthesis of the single-walled carbon nanotubes(SWCNTs) using laminated catalyst(Al/Fe/Al) layer deposited by sputter on Si(001). SWCNTs are grown by thermal chemical vapor deposition (TCVD) method. As the results of scanning electron microscopy(SEM), high resolution transmission electron microscopy(HR-TEM) and Raman spectroscopy, we confirmed the SWCNTs bundles with narrow diameter distribution of $1.14{\sim}1.32\;nm$ and average G&D ratio of 22.76. Compare to the sample having Fe/Al catalyst layer, it can be proposed that the top-aluminum incorporated with iron catalyst plays an important role in growing process of CNTs as a agglomeration barrier of the Fe catalyst. Thus, we suggest that a proper quantity of aluminium metal incorporated in Fe catalyst induce small and uniform iron catalysts causing SWCNTs with narrow diameter distribution.

Enhancement of Electrochemical Performance of Cathode by Optimizing Laccase-Carbon Nanotubes Layers for Enzymatic Fuel Cells (Laccase-탄소나노튜브 적층을 통한 효소 연료전지의 cathode 성능 향상)

  • Wang, Xue;Kim, Chang-Joon
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.550-556
    • /
    • 2022
  • The performance of enzymatic fuel cells that convert chemical energy contained in various organic molecules such as sugar, alcohol, organic acids, and amino acids into electrical energy is greatly affected by the cathode as well as the anode. This study aimed to develop a laccase-based cathode with high performance. An enzyme composite composed of an laccase, redox mediator, and carbon nanotubes was immobilized on the surface of electrode in multiple layers, and the effect of the number of layers and the presence or absence of carbon nanotubes on electrode performance was investigated. As the number of layers of the enzyme-mediator (Lac-(PVI-Os-dCl)) on the electrode surface increased, the amount of reduction current generated at the electrode increased. The enzyme-carbon nanotube-mediator composite electrode (Lac-SWCNTs-(PVI-Os-dCl)) generated a current 1.7 times greater than that of the Lac-(PVI-Os-dCl). It was found that the largest amount of current (10.1±0.1 µA) was generated in the electrode composed of two layers of Lac-(PVI-Os-dCl) and two layers of Lac-SWCNTs-(PVI-Os-dCl) in the evaluation of electrodes with different ratio of Lac-SWCNTs-(PVI-Os-dCl) and Lac-(PVI-Os-dCl). The maximum power density of the cell using the cathode composed of a single layer of Lac-(PVI-Os-dCl) and the cell using the optimized cathode were 0.46±0.05 and 1.23±0.04 µW/cm2, respectively. In this study, it was demonstrated that the performance of cathode and the enzymatic fuel cell using the same can be improved by optimizing the layers of composites composed of laccase, redox mediator, and carbon nanotubes on the electrode surface.

Memristors based on Al2O3/HfOx for Switching Layer Using Single-Walled Carbon Nanotubes (단일 벽 탄소 나노 튜브를 이용한 스위칭 레이어 Al2O3/HfOx 기반의 멤리스터)

  • DongJun, Jang;Min-Woo, Kwon
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.633-638
    • /
    • 2022
  • Rencently, neuromorphic systems of spiking neural networks (SNNs) that imitate the human brain have attracted attention. Neuromorphic technology has the advantage of high speed and low power consumption in cognitive applications and processing. Resistive random-access memory (RRAM) for SNNs are the most efficient structure for parallel calculation and perform the gradual switching operation of spike-timing-dependent plasticity (STDP). RRAM as synaptic device operation has low-power processing and expresses various memory states. However, the integration of RRAM device causes high switching voltage and current, resulting in high power consumption. To reduce the operation voltage of the RRAM, it is important to develop new materials of the switching layer and metal electrode. This study suggested a optimized new structure that is the Metal/Al2O3/HfOx/SWCNTs/N+silicon (MOCS) with single-walled carbon nanotubes (SWCNTs), which have excellent electrical and mechanical properties in order to lower the switching voltage. Therefore, we show an improvement in the gradual switching behavior and low-power I/V curve of SWCNTs-based memristors.