• 제목/요약/키워드: SWAT models

검색결과 75건 처리시간 0.021초

미계측 소유역의 수자원량 산정을 위한 가지야마 공식과 SWAT모형의 비교 분석 (Comparison of Water Resources by Kajiyama and SWAT models for an Ungauged Small Watershed)

  • 김기철;신민환;최용훈;서지연;최중대
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.2244-2248
    • /
    • 2008
  • This study was focused on estimated Stream Maintenance Flow and performed for simulate securing Stream Maintenance Flow in New town development area. Tributary streams were made of 6 small streams, joined Gong-ji Stream and Eu-am lake finally. For estimate Stream Maintenance Flow used Kajiyama and SWAT models for calculate available flow in study area. As a result the annual average stream flow dry years were $2,300{\sim}136,000\;m^/day3$, the annual average stream flow wet years were $4,800{\sim}136,031\;m^3/day$. The coefficient of determination($R^2$) and Nash-sutcliffe coefficient(EI) for comparison between Kajiyama and SWAT models were 0.88, 0.78 respectively.

  • PDF

농촌유역 하천의 수질예측을 위한 SWAT모형과 WASP모형의 연계운영 (Conjunctive Use of SWAT and WASP Models for the Water Quality Prediction in a Rural Watershed)

  • 권명준;권순국;홍성구
    • 한국농공학회지
    • /
    • 제45권2호
    • /
    • pp.116-125
    • /
    • 2003
  • Predictions of stream water quality require both estimation of pollutant loading from different sources and simulation of water quality processes in the stream. Nonpoint source pollution models are often employed for estimating pollutant loading in rural watersheds. In this study, a conjunctive application of SWAT model and WASP model was made and evaluated for its applicability based on the simulation results. Runoff and nutrient loading obtained from the SWAT model were used for generating input data for WASP model. The results showed that the simulated runoff was in good agreement with the observed data and indicated reasonable applicability. Loading for the water quality parameters predicted by WASP model also showed a reasonable agreement with the observed data. It is expected that stream water quality could be predicted by the coupled application of the two models, SWAT and WASP, in rural watersheds.

충주댐 유역의 SWAT-K와 HSPF모형에 의한 수문성분 모의특성 비교 분석 (Comparison of SWAT-K and HSPF for Hydrological Components Modeling in the Chungju Dam Watershed)

  • 김남원;신아현;김철겸
    • 한국환경과학회지
    • /
    • 제18권6호
    • /
    • pp.609-619
    • /
    • 2009
  • SWAT-K model is a modified version of the original SWAT, and is known to more accurately estimate the streamflows and pollutant loadings in Korean watersheds. In this study, its hydrological components were compared with those of HSPF in order to analyse the differences in total runoff including evapotranspiration(ET), surface flow, lateral flow and groundwater flow from the Chungju Dam watershed during $2000{\sim}2006$. Averaged annual runoff with SWAT-K overestimated by 1%, and HSPF underestimated it by 3% than observed runoff. Determination coefficients($R^2$) for observed and simulated daily streamflows by both the models were relatively good(0.80 by SWAT-K and 0.82 by HSPF). Potential ET and actual ET by HSPF were lower in winter, but similar or higher than those by SWAT-K. And though there were some differences in lateral and groundwater flows by two models because of the differences in hydrological algorithms, the results were to be reasonable. From the results, it was suggested that we should utilize a proper model considering the characteristic of study area and purposes of the model application because the simulated results from same input data could be different with models used. Also we should develop a novel model appropriate to Korean watersheds by enhancing limitations of the existing models in the future.

농업 비점오염원 평가를 위한 SWAT-APEX 모델의 적용성 검토 (The Applicability of SWAT-APEX Model for Agricultural Nonpoint Source Pollution Assessment)

  • 정충길;박종윤;이지완;정혁;김성준
    • 한국농공학회논문집
    • /
    • 제53권5호
    • /
    • pp.35-42
    • /
    • 2011
  • This study is to check the applicability of SWAT-APEX (Soil and Water Assessment Tool-Agricultural Policy / Environmental eXtender) model as combined watershed and field models by applying the APEX to paddies in a watershed (465.1 $km^2$) including Yedang reservoir. Firstly, the SWAT were calibrated with 3 years (2000~2002) daily streamflow and monthly water quality (T-N and T-P) data, and validated for another 3 years (2003~2005) data. The average Nash-Sutcliffe model efficiency (ME) of streamflow during validation was 0.73, and the coefficient of determination ($R^2$) of T-N and T-P were 0.77 and 0.73 respectively. Next, running the SWAT-APEX model with the SWAT calibrated parameters for paddies, the $R^2$ of T-N and T-P were 0.80 and 0.76 respectively. The results showed that SWAT-APEX model was more correctly predicted for T-N and T-P loads than SWAT model. The difference results between watershed and field models was predicted to have substantial impact on NPS loads, especially on T-N and T-P loads. Therefore, to improve negative NPS load simulations should be considered the model characteristics as simulating mechanism to properly select the NPS model for agricultural watershed.

Web-GIS 기반 SWAT 자료 공급 시스템 구축 (Development of Web-GIS based SWAT Data Generation System)

  • 남원호;최진용;홍은미;김학관
    • 한국농공학회논문집
    • /
    • 제51권6호
    • /
    • pp.1-9
    • /
    • 2009
  • Watershed topographical data is essential for the management for water resources and watershed management in terms of hydrology analysis. Collecting watershed topographical and meteorological data is the first step for simulating hydrological models and calculating hydrological components. This study describes a specialized Web-based Geographic Information Systems, Soil Water Assessment Tool model data generation system, which was developed to support SWAT model operation using Web-GIS capability for map browsing, online watershed delineation and topographical and meteorological data extraction. This system tested its operability extracting watershed topographical and meteorological data in real time and the extracted spatial and weather data were seamlessly imported to ArcSWAT system demonstrating its usability. The Web-GIS would be useful to users who are willing to operate SWAT models for the various watershed management purposes in terms of spatial and weather preparing.

GeoWEPP과 SWAT 모델을 이용한 산지 유역 강우-유출량 특성 분석 (Analysis of Rainfall-Runoff Characteristic at Mountainous Watershed Using GeoWEPP and SWAT Model)

  • 김지수;김민석;김진관;오현주;우충식
    • 한국지형학회지
    • /
    • 제28권2호
    • /
    • pp.31-44
    • /
    • 2021
  • Due to recent climate change, continuous soil loss is occurring in the mountainous watershed. The development of geographic information systems allows the spatial simulation of soil loss through hydrological models, but more researches applied to the mountain watershed areas in Korea are needed. In this study, prior to simulating the soil loss characteristics of the mountainous watershed, the field monitoring and the SWAT and GeoWEPP models were used to simulate and analyze the rainfall and runoff characteristics in the mountainous watershed area of Jirisan National Park. As a result of monitoring, runoff showed a characteristic of a rapid response as rainfall increased and decreased. In the simulation runoff results of calibrated SWAT models, R2, RMSE and NSE was 0.95, 0.03, and 0.95, respectively. The runoff simulation results of the GeoWEPP model were evaluated as 0.89, 0.30, and 0.83 for R2, RMSE, and NSE, respectively. These results, therefore, imply that the runoff simulated through SWAT and GeoWEPP models can be used to simulate soil loss. However, the results of the two models differ from the parameters and base flow of actual main channel, and further consideration is required to increase the model's accuracy.

정형·비정형 우도에 의한 SWAT 매개변수의 불확실성 평가 (Assessment of the uncertainty in the SWAT parameters based on formal and informal likelihood measure)

  • 성연정;이상협;정영훈
    • 한국수자원학회논문집
    • /
    • 제52권11호
    • /
    • pp.931-940
    • /
    • 2019
  • 수문모형에서 매개변수는 수문요소를 반영하거나 단순화된 모형을 보완하기 위해 사용된다. 이러한 과정에서 매개변수로 인한 모형의 불확실성이 발생할 수 있다. 따라서, 본 연구에서는 General Likelihood Uncertainty Estimation (GLUE)을 이용하여 SWAT 매개변수의 불확실성을 평가하고자 하였다. GLUE의 우도함수는 정형/비정형 우도를 이용하여 불확실성 해석을 수행하였다. 정형우도는 lognormal 함수를 비정형우도는 Nash-Sutcliffe Efficiency (NSE)를 이용하였다. 우도와 임계치를 선택하는데 주관적인 요소가 포함되지만 정형우도는 상위 30%, 비정형우도는 0.5이상의 NSE 값을 가지는 우도를 선택하여 행위모델을 생성하였다. 연구결과 우도선택과 임계치 선택의 주관성에도 불구하고 정형/비정형 우도는 작은 차이가 있었으나 우도의 선택과 상관없이 일관된 점분포, 사후분포 및 SWAT결과의 불확실성 범위를 나타내었다. 또한, 공통적으로 SWAT매개변수 가운데 기저유출과 관련된 ALPHA_BF가 가장 민감한 것으로 나타났다. 본 연구를 통하여 유역별로 어떤 임계치를 만족하는 SWAT모형 매개변수의 범위를 분류한다면 사용자들이 SWAT모형에 대한 실무적인 혹은 학술적인 접근이 용이해질 것으로 기대된다.

SWAT을 이용한 기후변화의 수문학적 영향평가를 위한 Proxy-basin Differential Split-Sampling 및 Blind-Validation 테스트 적용 (Application of Proxy-basin Differential Split-Sampling and Blind-Validation Tests for Evaluating Hydrological Impact of Climate Change Using SWAT)

  • 손경호;김정곤
    • 한국수자원학회논문집
    • /
    • 제41권10호
    • /
    • pp.969-982
    • /
    • 2008
  • 수문 모형의 발전이 거듭되면서, 최적 수자원의 관리를 위한 적정한 방법으로 인식되고 있다. 특히 수자원관리에 있어서 토지이용 변화 및 기후 변화에 따른 수문학적 영향 평가에 대한 요구가 증가하고 있다. 이 영향들을 평가하기 위해서는 우선 적용된 수문 모형의 강력한 검증이 요구된다. 그리고 수문모형의 적용 시 많은 지점에서 유량이 미 계측 되었거나, 측정된 자료마저 많은 오차를 포함하고 있는 경우가 있기 때문에 모형의 예측 값을 이용하여 수문분석이 이루어지는 경우가 많다. 이와 같은 경우에는 모형 결과 값에 대한 오차를 줄이기 위해서 강력한 모형 검증방법이 요구된다. 본 연구에서는 다른 물리적 특성을 가진 두 유역을 대상에 측정 유량을 통한 SWAT 모형의 검증 방법을 증명하고자 하였다. 이를 위하여, 금강유역에 위치한 수문학적 특징이 상이한 갑천유역과 용담유역을 선정하여, 먼저 갑천유역에 대하여 정밀한 검 보정을 실시하고, 갑천유역에서 개발된 방법론을 용담유역에 적용하여 모형의 검증을 시도하였다. 용담유역에 대하여 SWAT 모형을 적용한 결과 각 소유 역에서 $R_{eff}$는 0.49$\sim$0.85, $R^{2}$는 0.49$\sim$0.84로 모형은 관찰 값을 양호하게 모의하고 있는 것으로 나타났다. 그리고 모의 결과는 첨두유량 값은 다소 과소 산정하였지만, 전체적인 경향 및 기저유출량을 잘 모의하는 것으로 나타났다. 본 연구의 결과로부터 SWAT모형은 향후 토지이용변화 및 기후변화에 따른 유역특성변화 분석에 사용될 수 있을 것으로 판단된다. 하지만, 본 연구에서 사용된 혼용기법의 신뢰성을 높이기 위해서는 향후 추가적인 유역에 대한 방법론의 타당성 검증 절차를 거쳐야 할 것으로 사료된다.

SWAT 모형의 하도 수질 모듈의 개선 (Improvement of Channel Water Quality Module in SWAT)

  • 김남원;신아현
    • 한국물환경학회지
    • /
    • 제25권6호
    • /
    • pp.902-909
    • /
    • 2009
  • With various reservoirs, dams and reduction of water velocity in downstream, rivers in Korea often have characteristics of accumulation of pollutants. Therefore, the main focus of water quality modeling in Korea needs to be shifted from DO to algae and organic matter. Moreover the structures of water quality models should be modified to have capability of simulating BOD which is a key factor of total water pollution load management in Korea as laboratory experiment BOD (Bottle $BOD_5$). In the SWAT model which is one of the widely used water quality models in Korea, the channel water quality module is using main algorithm of the QUAL2E model which has limitations in simulating algae, organic matter and Bottle BOD5 etc. To overcome this hindrance, in this study, the improved channel water quality module of the SWAT model (Q-SWAT) was proposed by linking the algorithms of the QUAL-NIER model which was developed based on the QUAL2E model to the SWAT model. The algorithms estimating the increase of internal organic matter by fractionization algal metabolism process and calculating Bottle $BOD_5$ were added and the results of proposed model were compared to those of the original SWAT model. The results of comparison test are showing that more accurate BOD values can be obtained with the Q-SWAT model and it is anticipated that the Q-SWAT model can be used as an effective tool of decision support through the water quality simulation and long term pollution source analysis.

SWAT-SWMM 연계모의를 이용한 서낙동강 오염부하량 산정 방안 연구 (A Study on Estimation of Pollutant Loads in Seonakdong River Using SWAT-SWMM Model)

  • 김정민;김영도
    • 상하수도학회지
    • /
    • 제25권6호
    • /
    • pp.825-837
    • /
    • 2011
  • Seonakdong river consists of stagnant sections whose flowrate is controlled by the Daejeo and Noksan gates. As a result, there is not a minimum flow during normal times. The Daejeo and Noksan gates are located at the upstream head and the downstream end of Seonakdong river, respectively. Seonakdong river is an estuarine tributary of Nakdong river, which is a reservoir-like river used for agricultural irrigation, with the gate at the estuary of the river to prevent the intrusion of saline. Since the construction of the water gates, the water quality of the river has become degraded. This could also be due to the internal loading of pollutants, especially nutrients, from the sediments of the river because of the elongated detention time by the water gates. This study was thus conducted for the purpose of evaluating the current hydrologic-cycle system and providing measures for the rehabilitation of the hydrologic cycle. In this research, the daily outflow in Seonakdong River was simulated using the SWAT and SWMM models, and the water quality concentration including BOD, SS, TN, and TP were analyzed. The possibility of the application of SWAT-SWMM hybrid simulation was determined through the verification of both models. The error analysis shows that the results of both SWAT and SWAT-SWMM simulations make good agreements with those of field observations. For the single simulation results of SWAT, $R^{2}$ and NSE are 0.758, 0.511, respectively. For the hybrid simulation results of SWAT-SWMM, those are 0.880, 0.452, which means that the hybrid simulation can give more accurate results for the watershed where both the agricultural and urban areas exist.