• Title/Summary/Keyword: SW 프로그래밍 교육과정

Search Result 70, Processing Time 0.025 seconds

An Education Method of Computational Thinking using Microbit in a Java-based SW Lecture for Non-major Undergraduates (비전공자 대상 Java SW교육 강좌에서 마이크로비트를 이용한 컴퓨팅적 사고과정 교육 방법)

  • Hur, Kyeong
    • Journal of Practical Engineering Education
    • /
    • v.11 no.2
    • /
    • pp.167-174
    • /
    • 2019
  • In the case of Java programming education for non-major undergraduates, there are no examples of applying the physical computing education method. The advantage of physical computing education is that you can directly check the SW processing output result according to the input value of digital and analog sensor, so that you can quickly correct programming errors and improve learner's learning interest and satisfaction. In this paper, we use the microbits to combine physical computing education with basic Java programming education. In addition, according to the computational thinking process, we proposed an educational method for creating Java programs using microbits. Through block programming to control the microbits, we designed an algorithm and applied a training method to convert it into a Java program. In addition, the results of students' evaluations were analyzed in the course applying the education method, and the effectiveness of the education method using the microbit was analyzed.

A Study on the Verification of Computational Thinking Effectiveness of Understanding-Oriented SW Basic Education Program (이해중심 SW기초교육 프로그램의 컴퓨팅사고 효과성 검증 연구)

  • Oh, Kyung-Sun;Kwon, Jung-In
    • Journal of Digital Convergence
    • /
    • v.17 no.10
    • /
    • pp.23-35
    • /
    • 2019
  • In order to cultivate talented people who have problem solving ability due to computational thinking according to the trend of the fourth industrial revolution, each university is actively promoting software education. This study suggests that understanding-oriented SW curriculum is needed for non-majors students to improve computational thinking. In order to achieve the purpose of the study, this study designed the basic education program based on the understanding of the SW with the backward design model. The SW Basic Education Program was applied to 15 weeks of instruction and conducted three surveys. The positive effects of the understanding-oriented SW basic education on the computational thinking efficacy and the computer perception were verified. In addition, it was found that the understanding-oriented computational thinking and programming education are effective when they are linked to one process. It is expected that understanding-based SW based education, which uses the backward design model, can be applied as one of the efficient ways to improve computational thinking in the education field.

Study of Perception on Programming and Computational Thinking and Attitude toward Science Learning of High School Students through Software Inquiry Activity: Focus on using Scratch and physical computing materials (소프트웨어 활용 탐구 활동을 통한 고등학생의 프로그래밍과 컴퓨팅 사고력에 대한 인식 변화와 과학 학습에 대한 태도 조사 -스크래치와 피지컬 컴퓨팅 교구의 활용을 중심으로-)

  • Hwang, Yohan;Mun, Kongju;Park, Yunebae
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.2
    • /
    • pp.325-335
    • /
    • 2016
  • Software (SW) education is guided by the government to operate not only computer subject matter but also related subject matter. SW education is highlighted in the 2015 Revised Curriculum and Guide for Operating SW Education. SW education is related with science education. For example, education on algorithms employing SW and activities using sensors/output control can be an effective strategy for scientific inquiry. The method can also be applied in developing Computational Thinking (CT) in students. In this study, we designed lessons to solve everyday scientific problems using Educational Programming Language (EPL) SW and physical computing materials and applied them to high school students. We conducted surveys that were modified from questionnaires of Internet application capability and based on the standard of accomplishment of SW education as well as elements of CT to find out the change in perceptions on programming and CT of students. We also conducted a survey on students' attitude toward science learning after an SW inquiry activity. In the results, perceptions on programming and CT of students were improved through lessons using unplugged activity, EPL SW, and physical computing. In addition, scores for interest, self-directed learning ability, and task commitment were high.

Design of Teaching Method for SW Education Based On Python and Team-Shared Mental Model (파이썬과 팀 공유정신모형을 활용한 SW교육 방법의 설계)

  • Lee, Hakkyung;Park, Phanwoo;Yoo, Inhwan
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • According to the Fourth Industrial Revolution, SW education is emphasized around the world to educate student with new abilities. Following to these global trends, SW education has become mandatory in Korea's 2015 revised curriculum. However, Korean elementary SW education is focused on the use of block-based programming languages. In addition, the point of view of selecting goals and organizing content of SW Education, the affective domain is ignored and focused only on the cognitive and psychomotor domains. So, this study explored method of SW education using the concept of Team-Shared Mental Model for develop of community capacity and Python, which is textual programming language gaining popularity recently. As a result of performing the post test t-test on two groups with similar Team-Shared Mental Model formation, we found that it was effective in forming a Team-Shared Mental Model of the group applying the SW teaching method suggested in the study.

A Study on the development of elementary school SW·AI educational contents linked to the curriculum(camp type) (교육과정과 연계된 초등학교 캠프형 SW·AI교육 콘텐츠 개발에 관한 연구)

  • Pyun, YoungShin;Han, JungSoo
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.6
    • /
    • pp.49-54
    • /
    • 2022
  • Rapid changes in modern society after the COVID-19 have highlighted artificial intelligence talent as a major influencing factor in determining national competitiveness. Accordingly, the Ministry of Education planned a large-scale SW·AI camp education project to develop the digital capabilities of 4th to 6th grade elementary school students and middle and high school students who are in a vacuum in artificial intelligence education. Therefore, this study aims to develop a camp-type SW·AI education program for students in grades 4-6 of elementary school so that students in grades 4-6 of elementary school can acquire basic knowledge in artificial intelligence. For this, the meaning of SW·AI education in elementary school is defined and SW·AI contents to be dealt with in elementary school are: understanding of SW AI, 'principle and application of SW AI', and 'social impact of SW AI' was set. In addition, an attempt was made to link the set elements of elementary school SW AI education and learning with related subjects and units of textbooks currently used in elementary schools. As for the program used for education, entry, a software coding learning tool based on block coding, is designed to strengthen software programming basic competency, and all programs are designed to be operated centered on experience and experience-oriented participants in consideration of the developmental characteristics of elementary school students. In order for SW·AI education to be organized and operated as a member of the regular curriculum, it is suggested that research based on the analysis of regular curriculum contents and in-depth analysis of SW·AI education contents is necessary.

A Study on the Development of Software Education Program to Activate Employment for the Disabled

  • Lee, Won Joo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.3
    • /
    • pp.209-216
    • /
    • 2022
  • In this paper, we propose an effective software education program to promote employment of the disabled and verify the effectiveness of SW education through pilot operation. In this SW education program, we develop a SW curriculum consisting of the basic course, Unity programming course, and the advanced course, AR/VR digital content development course. The SW education achievement standard develops the basic and advanced course achievement standards in consideration of the level of the virtual reality content production job of the National Competency Standards(NCS) and the SW education achievement standards of youth with visual, hearing, and physical disabilities. SW education materials are developed on a project basis so that one AR/VR digital content can be implemented step by step according to the intellectual level of the disabled based on Unity. SW education pilot training is conducted as online education based on Blended Learning due to COVID-19. In order to derive the SW education effect and each learner's individual SW education academic achievement for the SW education pilot training, a survey is conducted on learners, and the results are analyzed. In the basic course, 77.3% of learners achieved academic achievement above excellent(80-90), and in the advanced course, 48.8% of learners achieved academic achievement above excellent(80-90). These results verify that the SW education program for the disabled developed in this paper is effective in activating employment for the disabled.

A Study on the Possibility of Block-based Programming Courses for Visual Impairments (시각장애 학생을 위한 블록 기반 프로그래밍 수업의 가능성 분석)

  • Eunbong Yang;Jamee Kim;Wongyu Lee
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.5
    • /
    • pp.361-374
    • /
    • 2022
  • The National Institute of Special Education developed and distributed software textbooks for disabled students according to the necessity of practical course in elementary school and information in middle school in the 2015 revised curriculum. It is a textbook provided from the perspective of education opportunity equity but the content of programming education for visually impaired students was insufficient. Therefore this study was conducted for the purpose of confirming the effectiveness of programming education for visual impaired students and providing the direction of future programming education. In order to achieve the purpose, programming classes were conducted for blind students in the 6th grade of elementary school. As a result of a study using "Blocks4All", a block-based programming tool with robots, students participated in classes actively and efficacy, intrest, and usefulness of programming are high. This study is meaningful in that it confirmed the possibility of programming education for visually impaired students.

Analysis of 2015 Revised SW Curriculum in Elementary and Middle School based on Core Competency (핵심 역량 중심 2015 개정 초·중학교 SW교육과정 분석)

  • Ahn, Sung Hun;Lee, Sanghyeon
    • Journal of Creative Information Culture
    • /
    • v.5 no.1
    • /
    • pp.63-70
    • /
    • 2019
  • In this paper, we analyzed 2015 revised curriculum for elementary school's practical art and middle school's information subject based on core competency. As a result, in 2015 revised curriculum for practical art subject, the ability to use information was well reflected in all achievement criteria and learning objectives. Also, problem solving ability and creativity·convergence ability were well reflected. In 2015 revised curriculum for information subject, the ability to use information was well reflected in all achievement criteria and learning objectives as like practical art subject. However, there were fewer learning elements to develop self-management ability. Therefore, it is proposed in this paper that the learning elements and teaching, learning activities and evaluation contents should be included in the SW curriculum, which can further enhance cooperative capabilities, self-management ability and communication ability.

Analysis about the Initial Process of Learning Transfer in Computational Thinking Education (Computational Thinking 교육에서 나타난 초기 학습전이에 대한 분석)

  • Kim, Soohwan
    • The Journal of Korean Association of Computer Education
    • /
    • v.20 no.6
    • /
    • pp.61-69
    • /
    • 2017
  • The Goal of SW education is to improve computational thinking. Especially, non computer majors need to apply computational thinking to their problem solving in their fields after computational thinking class. In this paper, we verified what factors affect the improvement of computational thinking through mixed research method after teaching computational thinking to non major students. Also, we analysed the characteristics of initial learning transfer of computational thinking, and establish the reason about he validity and justification for non major in SW education. The result shows learning satisfaction, learning transfer motivation, and self-CT efficacy affect the perception about improvement of computational thinking. Also, we found that there is application of computational thinking was coming up with problem solving process because the initial learning transfer process of computational thinking has characteristics about concepts and practices of it in programming steps. The effectiveness and learning transfer process of computational thinking for non majors will give the validity and justification to teach SW education for all students.

A Study on the Improvement Scheme of University's Software Education

  • Lee, Won Joo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.3
    • /
    • pp.243-250
    • /
    • 2020
  • In this paper, we propose an effective software education scheme for universities. The key idea of this software education scheme is to analyze software curriculum of QS world university rankings Top 10, SW-oriented university, and regional main national university. And based on the results, we propose five improvements for the effective SW education method of universities. The first is to enhance the adaptability of the industry by developing courses based on the SW developer's job analysis in the curriculum development process. Second, it is necessary to strengthen the curriculum of the 4th industrial revolution core technologies(cloud computing, big data, virtual/augmented reality, Internet of things, etc.) and integrate them with various fields such as medical, bio, sensor, human, and cognitive science. Third, programming language education should be included in software convergence course after basic syntax education to implement projects in various fields. In addition, the curriculum for developing system programming developers and back-end developers should be strengthened rather than application program developers. Fourth, it offers opportunities to participate in industrial projects by reinforcing courses such as capstone design and comprehensive design, which enables product-based self-directed learning. Fifth, it is necessary to develop university-specific curriculum based on local industry by reinforcing internship or industry-academic program that can acquire skills in local industry field.