• Title/Summary/Keyword: SVOCs

Search Result 7, Processing Time 0.024 seconds

Consideration of Measurement Method for SVOCs Emission Rates (실내 준휘발성유기화합물 방출량 측정법에 대한 고찰)

  • Seo, Jang-Hoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.5
    • /
    • pp.375-382
    • /
    • 2011
  • Semi volatile organic compounds (SVOCs) are used as plasticizers in building materials, interior materials, furniture, consumer electronics. etc. In the home, these SVOCs mix together with house dust. There is thus concern over the health effects of SVOCS in the home, there is a risk that they ini1uence childhood asthma and allergies. It is difficult to measure SVOCs emission rates from building materials or household appliances utilizing the usual test chamber methods, because the boiling points of SVOCs are higher and they are apt to adhere to the surface of the test chamber used. In this study, we introduce FLEC chamber method, passive sampler method and micro chamber method, which are used in Germany and Japan in order to measure SVOCs emission rates. Characteristic, merits and demerits of test methods are also considered.

Exposure Assessment of Phthalates from House Dust and Organic Films in the Indoor Environment (실내환경 중 집먼지 및 유기필름에서 기인한 프탈레이트 노출평가)

  • Joen, Jeong-In;Lee, Hye-Won;Lee, Seung-Hyun;Lee, Jeong-Il;Lee, Cheol-Min
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.2
    • /
    • pp.75-85
    • /
    • 2022
  • Background: Various types of semi-volatile organic compounds (SVOCs) exist in the public's living environment. They occur in different forms in terms of their physical and chemical properties and partition coefficients. As a consequence, indoor exposure to SVOCs occurs via various routes, including inhalation of air and airborne particles, skin contact, and dust intake. Objectives: To propose a method for assessing human exposure to the SVOCs occurring in the air of an indoor environment, the concentrations of SVOCs in house dust and organic films measured in a real residential environment were estimated in terms of gas-phase concentration using the partition coefficient. Assessment of inhalation exposure to SVOCs was performed using this method. Methods: Phthalates were collected from samples of house dust and organic films from 110 households in a real residential environment. To perform an exposures assessment of the phthalates present in organic films, gas-phase concentration was calculated using the partition coefficient. The airborne gas-phase concentrations of phthalates from the house dust and organic films were estimated and exposure assessment was performed based on the assumption of inhalation exposure from air. Results: As a result of the exposure assessment for gas-phase phthalates from house dust and organic films, preschool children showed the highest level of inhalation of phthalates, followed by school children, adults, and adolescents. Conclusions: This study includes the limitation of not considering different SVOCs exposure pathways in the health impact assessment, including those of phthalates in the indoor living environment. However, this study has the significance of performing exposure assessment based on exposure to SVOCs present in indoor air that originated from organic films in the indoor residential environment. Therefore, the results of this study should be useful as basic data for exposure and health risk assessments of SVOCs associated with organic films in the indoor environment.

Removal of diesel hydrocarbons by microwave-enhanced soil vapor extraction (Focused on Loss and Kinetic constant for Diesel Hydrocarbons)

  • 김종운;박갑성
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.223-226
    • /
    • 2004
  • In this paper, removal of diesel hydrocarbons (C$_{10}$-C$_{22}$) for dry and moist soil was investigated so that microwave-enhanced soil vapor extraction(SVE) reduced soil treatment time and raised remediation efficiency. Kinetic constants of diesel hydrocarbons with microwave energy were 7 times on dry soil and 1580 times on moist soil as much as those of SVE process without microwave energy. The diesel removals were 67.7~78.4% for $C_{10}$ and $C_{12}$, and 0~18.5% for $C_{14}$~C$_{22}$ for dry and moist soil with SVE process only. On the other hand, dry soil with microwave-enhanced SVE process showed 89.3~99.4% removal for $C_{10}$ and $C_{12}$ and 35.6~67.0% for hydrocarbons over $C_{14}$. All hydrocarbons(C$_{10}$~C$_{22}$) studied were significantly removed (93.6~99.8%) for moist soil with microwave-enhanced SVE process. Almost all diesel hydrocarbons were usually considered as semi-volatile compounds(SVOCs). Microwave-enhanced SVE process might have a great potential for remediation of soils contaminated with SVOCs.OCs.

  • PDF

Fingerprint of Carcinogenic Semi-Volatile Organic Compounds (SVOCs) during Bonfire Night

  • Pongpiachan, Siwatt
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.3243-3254
    • /
    • 2013
  • It is well known that increased incidences of lung, skin, and bladder cancers are associated with occupational exposure to PAHs. Animal studies show that certain PAHs also can affect the hematopoietic and immune systems and can produce reproductive, neurologic, and developmental effects. As a consequence, several studies have been attempted to investigate the fate of PAHs in atmospheric environment during the past decades. However, there is still a lack of information in regard to the atmospheric concentration of PAHs during the "Bon Fire Night". In this study, twenty-three polycyclic aromatic hydrocarbons and twenty-eight aliphatics were identified and quantified in the $PM_{10}$ and vapour range in Birmingham ($27^{th}$ November 2001-$19^{th}$ January 2004). The measured concentrations of total particulate and vapour (P+V) PAHs were consistently higher at the BROS in both winter and summer. Arithmetic mean total (P+V) PAH concentrations were $51.04{\pm}47.62$ ng $m^{-3}$ and $22.30{\pm}19.18$ ng $m^{-3}$ at the Bristol Road Observatory Site (BROS) and Elms Road Observatory Site (EROS) respectively. In addition arithmetic mean total (P+V) B[a]P concentrations at the BROS were $0.47{\pm}0.39$ ng $m^{-3}$ which exceeded the EPAQS air quality standard of 0.25 ng $m^{-3}$. On the other hand, the arithmetic mean total (P+V) aliphatics were $81.80{\pm}69.58$ ng $m^{-3}$ and $48.00{\pm}35.38$ ng $m^{-3}$ at the BROS and EROS in that order. The lowest average of CPI and $C_{max}$ measured at the BROS supports the idea of traffic emissions being a principle source of SVOCs in an urban atmosphere. The annual trend of PAHs was investigated by using an independent t-test and oneway independent ANOVA analysis. Generally, there is no evidence of a significant decline of heavier MW PAHs from the two data sets, with only Ac, Fl, Ph, An, 2-MePh, 1+9-MePh, Fluo and B[b+j+k]F showing a statistically significant decline (p<0.05). A further attempt for statistical analysis had been conducted by dividing the data set into three groups (i.e. 2000, 2001-2002 and 2003-2004). For lighter MW compounds a significant level of decline was observed by using one-way independent ANOVA analysis. Since the annual mean of $O_3$ measured in Birmingham City Centre from 2001 to 2004 increased significantly (p<0.05), it may be possible to attribute the annul reduction of more volatile PAHs to the enhanced level of annual average $O_3$. By contrast, the heavier MW PAHs measured at the BROS did not show any significant annual reduction, implying the difficulties of 5- and 6-ring PAHs to be subject to photochemical decomposition. The deviation of SVOCs profile measured at the EROS was visually confirmed during the "Bonfire Night" festival closest to the $6^{th}$ November 2003. In this study, the atmospheric PAH concentrations were generally elevated on this day with concentrations of Fl, Ac, B[a]A, B[b+j+k]F, Ind and B[g,h,i]P being particularly high.

Determination of hazardous semi-volatile organic compounds in industrial wastewater using disk-type solid-phase extraction and GC-MS (디스크형 고상 추출법과 GC/MS를 이용한 공장폐수 중 반휘발성유기화합물질 분석)

  • Lee, In-Jung;Lim, Tae-Hyo;Heo, Seong-Nam;Nam, Su-Gyeong;Lee, Jae-Gwan;Cheon, Se-Uk
    • Analytical Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.236-241
    • /
    • 2012
  • There are many industrial factories in the central Nakdong river basin and have been occurred water pollution accidents by hazardous chemicals such as phenol, 1,4-dioxane and perchlorate. In this study, ten compounds of semi-volatile organic compounds (SVOCs) (dichlorvos, toluene-2,4-diisocyanate, 4,4'-methylenedianiline, 4,4'-methylenebis (2-chloroaniline), diethyl phthalate, di-n-butyl phthalate, butyl benzyl phthaltate, bis (2-ethylhexyl) adipate, benzophenone, 4,4'-bisphenol A) of hazardous chemicals which may be potentially discharged into the Nakdong river, were determined by gas chromatography-mass spectrometry (GC-MS) with disk-type solid-phase extraction. Accuracy and precision were in the range of 75.6~110.5%, and 4.6~12.7%, respectively and recovery was in the range of 72.4~127.9%. Three compounds (bis (2-ethylhexyl)adipate, benzophenone, 4,4'-bisphenol A) were detected in industrial wastewater such as wastewater treatment plants (WWTPs) and wastewater discharge facilities in the Nakdong River basin.

Trace level analysis of 25 semi-volatile organic compounds in surface water by gas chromatography-mass spectrometry (지표수에서 GC/MS에 의한 25개 준휘발성유기화합물의 극미량 분석)

  • Kim, Tae-Seung;Hong, Suk-Young;Kim, Jong-Eun;Oh, Jin-Aa;Shin, Ho-Sang
    • Analytical Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.60-68
    • /
    • 2012
  • A gas chromatography-mass spectrometric (GC-MS) method was developed for determining 25 semivolatile organic compounds in water. A 1.0 L water sample was placed in a separatory funnel and saturated with NaCl, and the solution was extracted two times with 40 mL of methylene chloride. Under the established condition, the linear quantification range was 0.02-800 ng/L and the relative standard deviation was less than 15%. The method was used to analyze 16 surface water samples collected from various regions in Gum-River. The samples revealed SVOC concentrations in the range of 0.02-96.8 ng/L. Maximum concentrations of VOCs detected were not exceeded the EPA or Germany guidelines in any of the samples. The developed method may be valuable for monitoring SVOCs in water.

A Study on the Effect of Photocatalyst Coating to Improve the Indoor Air Quality in Buildings (건축물 실내 공기질 향상을 위한 광촉매 코팅 효과에 관한 연구)

  • Park, Hyeon-Ku;Kim, Jong-Ho;Go, Seong-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.150-157
    • /
    • 2006
  • Sick Building Syndrome (SBS) is an illness symptom such as irritation of eyes, skin eruption and vomit ing in newly constructed buildings. It is mainly due to the harmful gases from the materials installed in building such as Volatile Organic Compounds (VOCs), Semivolatile Organic Compounds (SVOCs), floating bacteria, fungi, fungal spores and viruses, human bioeffluents in many modem buildings. The general ways to improve the Indoor Air Quality (IAQ) are ventilating, utilizing eco-material without harmful gases and reducing or removing harmful gases through additional treatment to the building materials. This study aimed to improve the Indoor Air Quality(IAQ) by applying surface coating on the building materials and to make safe living environments through the analysis of air quality before and after surface coating treatment in buildings.