• Title/Summary/Keyword: SVM classification Algorithm

Search Result 279, Processing Time 0.024 seconds

Development of a Classification Method for Forest Vegetation on the Stand Level, Using KOMPSAT-3A Imagery and Land Coverage Map (KOMPSAT-3A 위성영상과 토지피복도를 활용한 산림식생의 임상 분류법 개발)

  • Song, Ji-Yong;Jeong, Jong-Chul;Lee, Peter Sang-Hoon
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.6
    • /
    • pp.686-697
    • /
    • 2018
  • Due to the advance in remote sensing technology, it has become easier to more frequently obtain high resolution imagery to detect delicate changes in an extensive area, particularly including forest which is not readily sub-classified. Time-series analysis on high resolution images requires to collect extensive amount of ground truth data. In this study, the potential of land coverage mapas ground truth data was tested in classifying high-resolution imagery. The study site was Wonju-si at Gangwon-do, South Korea, having a mix of urban and natural areas. KOMPSAT-3A imagery taken on March 2015 and land coverage map published in 2017 were used as source data. Two pixel-based classification algorithms, Support Vector Machine (SVM) and Random Forest (RF), were selected for the analysis. Forest only classification was compared with that of the whole study area except wetland. Confusion matrixes from the classification presented that overall accuracies for both the targets were higher in RF algorithm than in SVM. While the overall accuracy in the forest only analysis by RF algorithm was higher by 18.3% than SVM, in the case of the whole region analysis, the difference was relatively smaller by 5.5%. For the SVM algorithm, adding the Majority analysis process indicated a marginal improvement of about 1% than the normal SVM analysis. It was found that the RF algorithm was more effective to identify the broad-leaved forest within the forest, but for the other classes the SVM algorithm was more effective. As the two pixel-based classification algorithms were tested here, it is expected that future classification will improve the overall accuracy and the reliability by introducing a time-series analysis and an object-based algorithm. It is considered that this approach will contribute to improving a large-scale land planning by providing an effective land classification method on higher spatial and temporal scales.

Multiclass SVM Model with Order Information

  • Ahn, Hyun-Chul;Kim, Kyoung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.331-334
    • /
    • 2006
  • Original Support Vsctor Machines (SVMs) by Vapnik were used for binary classification problems. Some researchers have tried to extend original SVM to multiclass classification. However, their studies have only focused on classifying samples into nominal categories. This study proposes a novel multiclass SVM model in order to handle ordinal multiple classes. Our suggested model may use less classifiers but predict more accurately because it utilizes additional hidden information, the order of the classes. To validate our model, we apply it to the real-world bond rating case. In this study, we compare the results of the model to those of statistical and typical machine learning techniques, and another multi class SVM algorithm. The result shows that proposed model may improve classification performance in comparison to other typical multiclass classification algorithms.

Improving SVM Classification by Constructing Ensemble (앙상블 구성을 이용한 SVM 분류성능의 향상)

  • 제홍모;방승양
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.3_4
    • /
    • pp.251-258
    • /
    • 2003
  • A support vector machine (SVM) is supposed to provide a good generalization performance, but the actual performance of a actually implemented SVM is often far from the theoretically expected level. This is largely because the implementation is based on an approximated algorithm, due to the high complexity of time and space. To improve this limitation, we propose ensemble of SVMs by using Bagging (bootstrap aggregating) and Boosting. By a Bagging stage each individual SVM is trained independently using randomly chosen training samples via a bootstrap technique. By a Boosting stage an individual SVM is trained by choosing training samples according to their probability distribution. The probability distribution is updated by the error of independent classifiers, and the process is iterated. After the training stage, they are aggregated to make a collective decision in several ways, such ai majority voting, the LSE(least squares estimation) -based weighting, and double layer hierarchical combining. The simulation results for IRIS data classification, the hand-written digit recognition and Face detection show that the proposed SVM ensembles greatly outperforms a single SVM in terms of classification accuracy.

Development of Classification Model for hERG Ion Channel Inhibitors Using SVM Method (SVM 방법을 이용한 hERG 이온 채널 저해제 예측모델 개발)

  • Gang, Sin-Moon;Kim, Han-Jo;Oh, Won-Seok;Kim, Sun-Young;No, Kyoung-Tai;Nam, Ky-Youb
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.653-662
    • /
    • 2009
  • Developing effective tools for predicting absorption, distribution, metabolism, excretion properties and toxicity (ADME/T) of new chemical entities in the early stage of drug design is one of the most important tasks in drug discovery and development today. As one of these attempts, support vector machines (SVM) has recently been exploited for the prediction of ADME/T related properties. However, two problems in SVM modeling, i.e. feature selection and parameters setting, are still far from solved. The two problems have been shown to be crucial to the efficiency and accuracy of SVM classification. In particular, the feature selection and optimal SVM parameters setting influence each other, which indicates that they should be dealt with simultaneously. In this account, we present an integrated practical solution, in which genetic-based algorithm (GA) is used for feature selection and grid search (GS) method for parameters optimization. hERG ion-channel inhibitor classification models of ADME/T related properties has been built for assessing and testing the proposed GA-GS-SVM. We generated 6 different models that are 3 different single models and 3 different ensemble models using training set - 1891 compounds and validated with external test set - 175 compounds. We compared single model with ensemble model to solve data imbalance problems. It was able to improve accuracy of prediction to use ensemble model.

Efficient Implementation of SVM-Based Speech/Music Classification on Embedded Systems (SVM 기반 음성/음악 분류기의 효율적인 임베디드 시스템 구현)

  • Lim, Chung-Soo;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.8
    • /
    • pp.461-467
    • /
    • 2011
  • Accurate classification of input signals is the key prerequisite for variable bit-rate coding, which has been introduced in order to effectively utilize limited communication bandwidth. Especially, recent surge of multimedia services elevate the importance of speech/music classification. Among many speech/music classifier, the ones based on support vector machine (SVM) have a strong selling point, high classification accuracy, but their computational complexity and memory requirement hinder their way into actual implementations. Therefore, techniques that reduce the computational complexity and the memory requirement is inevitable, particularly for embedded systems. We first analyze implementation of an SVM-based classifier on embedded systems in terms of execution time and energy consumption, and then propose two techniques that alleviate the implementation requirements: One is a technique that removes support vectors that have insignificant contribution to the final classification, and the other is to skip processing some of input signals by virtue of strong correlations in speech/music frames. These are post-processing techniques that can work with any other optimization techniques applied during the training phase of SVM. With experiments, we validate the proposed algorithms from the perspectives of classification accuracy, execution time, and energy consumption.

Imbalanced SVM-Based Anomaly Detection Algorithm for Imbalanced Training Datasets

  • Wang, GuiPing;Yang, JianXi;Li, Ren
    • ETRI Journal
    • /
    • v.39 no.5
    • /
    • pp.621-631
    • /
    • 2017
  • Abnormal samples are usually difficult to obtain in production systems, resulting in imbalanced training sample sets. Namely, the number of positive samples is far less than the number of negative samples. Traditional Support Vector Machine (SVM)-based anomaly detection algorithms perform poorly for highly imbalanced datasets: the learned classification hyperplane skews toward the positive samples, resulting in a high false-negative rate. This article proposes a new imbalanced SVM (termed ImSVM)-based anomaly detection algorithm, which assigns a different weight for each positive support vector in the decision function. ImSVM adjusts the learned classification hyperplane to make the decision function achieve a maximum GMean measure value on the dataset. The above problem is converted into an unconstrained optimization problem to search the optimal weight vector. Experiments are carried out on both Cloud datasets and Knowledge Discovery and Data Mining datasets to evaluate ImSVM. Highly imbalanced training sample sets are constructed. The experimental results show that ImSVM outperforms over-sampling techniques and several existing imbalanced SVM-based techniques.

Pattern Classification for Biomedical Signal using BP Algorithm and SVM (BP알고리즘과 SVM을 이용한 심전도 신호의 패턴 분류)

  • Kim, Man-Sun;Lee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.82-87
    • /
    • 2004
  • ECG consists of various waveforms of electric signals of heat. Datamining can be used for analyzing and classifying the waveforms. Conventional studies classifying electrocardiogram have problems like extraction of distorted characteristics, overfitting, etc. This study classifies electrocardiograms by using BP algorithm and SVM to solve the problems. As results, this study finds that SVM provides an effective prohibition of overfitting in neural networks and guarantees a sole global solution, showing excellence in generalization performance.

EEG Signal Classification based on SVM Algorithm (SVM(Support Vector Machine) 알고리즘 기반의 EEG(Electroencephalogram) 신호 분류)

  • Rhee, Sang-Won;Cho, Han-Jin;Chae, Cheol-Joo
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.2
    • /
    • pp.17-22
    • /
    • 2020
  • In this paper, we measured the user's EEG signal and classified the EEG signal using the Support Vector Machine algorithm and measured the accuracy of the signal. An experiment was conducted to measure the user's EEG signals by separating men and women, and a single channel EEG device was used for EEG signal measurements. The results of measuring users' EEG signals using EEG devices were analyzed using R. In addition, data in the study was predicted using a 80:20 ratio between training data and test data by applying a combination of specific vectors with the highest classifying performance of the SVM, and thus the predicted accuracy of 93.2% of the recognition rate. This paper suggested that the user's EEG signal could be recognized at about 93.2 percent, and that it can be performed only by simple linear classification of the SVM algorithm, which can be used variously for biometrics using EEG signals.

Defect Diagnostics of Gas Turbine Engine Using Support Vector Machine and Artificial Neural Network (Support Vector Machine과 인공신경망을 이용한 가스터빈 엔진의 결함 진단에 관한 연구)

  • Park Jun-Cheol;Roh Tae-Seong;Choi Dong-Whan;Lee Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.102-109
    • /
    • 2006
  • In this Paper, Support Vector Machine(SVM) and Artificial Neural Network(ANN) are used for developing the defect diagnostic algorithm of the aircraft turbo-shaft engine. The system that uses the ANN falls in a local minima when it learns many nonlinear data, and its classification accuracy ratio becomes low. To make up for this risk, the Separate Learning Algorithm(SLA) of ANN has been proposed by using SVM. This is the method that ANN learns selectively after discriminating the defect position by SVM, then more improved performance estimation can be obtained than using ANN only. The proposed SLA can make the higher classification accuracy by decreasing the nonlinearity of the massive data during the training procedure.

Defect Diagnostics of Gas Turbine Engine with Altitude Variation Using SVM and Artificial Neural Network (SVM과 인공신경망을 이용한 고도 변화에 따른 가스터빈 엔진의 결함 진단 연구)

  • Lee Sang-Myeong;Choi Won-Jun;Roh Tae-Seong;Choi Dong-Whan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.209-212
    • /
    • 2006
  • In this study, Support Vector Machine(SVM) and Artificial Neural Network(ANN) are used for developing the defect diagnostic algorithm of the aircraft turbo-shaft engine. Effect of altitude variation on the Defect Diagnostics algorithm has been included and evaluated. Separate learning Algorithm(SLA) suggested with ANN to loam the performance data selectively after classifying the position of defects by SVM improves the classification speed and accuracy.

  • PDF