• Title/Summary/Keyword: SVM Model

Search Result 714, Processing Time 0.027 seconds

Estimation of compressive strength of BFS and WTRP blended cement mortars with machine learning models

  • Ozcan, Giyasettin;Kocak, Yilmaz;Gulbandilar, Eyyup
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.275-282
    • /
    • 2017
  • The aim of this study is to build Machine Learning models to evaluate the effect of blast furnace slag (BFS) and waste tire rubber powder (WTRP) on the compressive strength of cement mortars. In order to develop these models, 12 different mixes with 288 specimens of the 2, 7, 28, and 90 days compressive strength experimental results of cement mortars containing BFS, WTRP and BFS+WTRP were used in training and testing by Random Forest, Ada Boost, SVM and Bayes classifier machine learning models, which implement standard cement tests. The machine learning models were trained with 288 data that acquired from experimental results. The models had four input parameters that cover the amount of Portland cement, BFS, WTRP and sample ages. Furthermore, it had one output parameter which is compressive strength of cement mortars. Experimental observations from compressive strength tests were compared with predictions of machine learning methods. In order to do predictive experimentation, we exploit R programming language and corresponding packages. During experimentation on the dataset, Random Forest, Ada Boost and SVM models have produced notable good outputs with higher coefficients of determination of R2, RMS and MAPE. Among the machine learning algorithms, Ada Boost presented the best R2, RMS and MAPE values, which are 0.9831, 5.2425 and 0.1105, respectively. As a result, in the model, the testing results indicated that experimental data can be estimated to a notable close extent by the model.

A Study on the Performance Evaluation of Machine Learning for Predicting the Number of Movie Audiences (영화 관객 수 예측을 위한 기계학습 기법의 성능 평가 연구)

  • Jeong, Chan-Mi;Min, Daiki
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.2
    • /
    • pp.49-63
    • /
    • 2020
  • The accurate prediction of box office in the early stage is crucial for film industry to make better managerial decision. With aims to improve the prediction performance, the purpose of this paper is to evaluate the use of machine learning methods. We tested both classification and regression based methods including k-NN, SVM and Random Forest. We first evaluate input variables, which show that reputation-related information generated during the first two-week period after release is significant. Prediction test results show that regression based methods provides lower prediction error, and Random Forest particularly outperforms other machine learning methods. Regression based method has better prediction power when films have small box office earnings. On the other hand, classification based method works better for predicting large box office earnings.

Development of game indicators and winning forecasting models with game data (게임 데이터를 이용한 지표 개발과 승패예측모형 설계)

  • Ku, Jimin;Kim, Jaehee
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.237-250
    • /
    • 2017
  • A new field of e-sports gains the great popularity in Korea as well as abroad. AOS (aeon of strife) genre games are quickly gaining popularity with gamers from all over the world and the game companies hold game competitions. The e-sports broadcasting teams and webzines use a variety of statistical indicators. In this paper, as an AOS genre game, League of Legends game data is used for statistical analysis using the indicators to predict the outcome. We develop new indicators with the factor analysis to improve existing indicators. Also we consider discriminant function, neural network model, and SVM (support vector machine) for make winning forecasting models. As a result, the new position indicators reflect the nature of the role in the game and winning forecasting models show more than 95 percent accuracy.

Image Segmentation by Cascaded Superpixel Merging with Privileged Information (단계적 슈퍼픽셀 병합을 통한 이미지 분할 방법에서 특권정보의 활용 방안)

  • Park, Yongjin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.9
    • /
    • pp.1049-1059
    • /
    • 2019
  • We propose a learning-based image segmentation algorithm. Starting from super-pixels, our method learns the probability of merging two regions based on the ground truth made by humans. The learned information is used in determining whether the two regions should be merged or not in a segmentation stage. Unlike exiting learning-based algorithms, we use both local and object information. The local information represents features computed from super-pixels and the object information represent high level information available only in the learning process. The object information is considered as privileged information, and we can use a framework that utilize the privileged information such as SVM+. In experiments on the Berkeley Segmentation Dataset and Benchmark (BSDS 500) and PASCAL Visual Object Classes Challenge (VOC 2012) data set, out model exhibited the best performance with a relatively small training data set and also showed competitive results with a sufficiently large training data set.

Development of a Resignation Prediction Model using HR Data (HR 데이터 기반의 퇴사 예측 모델 개발)

  • PARK, YUNJUNG;Lee, Do-Gil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.100-103
    • /
    • 2021
  • Most companies study why employees resign their jobs to prevent the outflow of excellent human resources. To obtain the data needed for the study, employees are interviewed or surveyed before resignation. However, it is difficult to get accurate results because employees do not want to express their opinions that may be disadvantageous to working in a survey. Meanwhile, according to the data released by the Korea Labor Institute, the greater the difference between the minimum level of education required by companies and the level of employees' academic background, the greater the tendency to resign jobs. Therefore, based on these data, in this study, we would like to predict whether employees will leave the company based on data such as major, education level and company type. We generate four kinds of resignation prediction models using Decision Tree, XGBoost, kNN and SVM, and compared their respective performance. As a result, we could identify various factors that were not covered in previous study. It is expected that the resignation prediction model help companies recognize employees who intend to leave the company in advance.

  • PDF

A Performance Comparison of Machine Learning Classification Methods for Soil Creep Susceptibility Assessment (땅밀림 위험지 평가를 위한 기계학습 분류모델 비교)

  • Lee, Jeman;Seo, Jung Il;Lee, Jin-Ho;Im, Sangjun
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.4
    • /
    • pp.610-621
    • /
    • 2021
  • The soil creep, primarily caused by earthquakes and torrential rainfall events, has widely occurred across the country. The Korea Forest Service attempted to quantify the soil creep susceptible areas using a discriminant value table to prevent or mitigate casualties and/or property damages in advance. With the advent of advanced computer technologies, machine learning-based classification models have been employed for managing mountainous disasters, such as landslides and debris flows. This study aims to quantify the soil creep susceptibility using several classifiers, namely the k-Nearest Neighbor (k-NN), Naive Bayes (NB), Random Forest (RF), and Support Vector Machine (SVM) models. To develop the classification models, we downscaled 292 data from 4,618 field survey data. About 70% of the selected data were used for training, with the remaining 30% used for model testing. The developed models have the classification accuracy of 0.727 for k-NN, 0.750 for NB, 0.807 for RF, and 0.750 for SVM against test datasets representing 30% of the total data. Furthermore, we estimated Cohen's Kappa index as 0.534, 0.580, 0.673, and 0.585, with AUC values of 0.872, 0.912, 0.943, and 0.834, respectively. The machine learning-based classifications for soil creep susceptibility were RF, NB, SVM, and k-NN in that order. Our findings indicate that the machine learning classifiers can provide valuable information in establishing and implementing natural disaster management plans in mountainous areas.

The Development of a Fault Diagnosis Model Based on Principal Component Analysis and Support Vector Machine for a Polystyrene Reactor (주성분 분석과 서포트 벡터 머신을 이용한 폴리스티렌 중합 반응기 이상 진단 모델 개발)

  • Jeong, Yeonsu;Lee, Chang Jun
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.223-228
    • /
    • 2022
  • In chemical processes, unintended faults can make serious accidents. To tackle them, proper fault diagnosis models should be designed to identify the root cause of faults. To design a fault diagnosis model, a process and its data should be analyzed. However, most previous researches in the field of fault diagnosis just handle the data set of benchmark processes simulated on commercial programs. It indicates that it is really hard to get fresh data sets on real processes. In this study, real faulty conditions of an industrial polystyrene process are tested. In this process, a runaway reaction occurred and this caused a large loss since operators were late aware of the occurrence of this accident. To design a proper fault diagnosis model, we analyzed this process and a real accident data set. At first, a mode classification model based on support vector machine (SVM) was trained and principal component analysis (PCA) model for each mode was constructed under normal operation conditions. The results show that a proposed model can quickly diagnose the occurrence of a fault and they indicate that this model is able to reduce the potential loss.

Performance Evaluation of Machine Learning and Deep Learning Algorithms in Crop Classification: Impact of Hyper-parameters and Training Sample Size (작물분류에서 기계학습 및 딥러닝 알고리즘의 분류 성능 평가: 하이퍼파라미터와 훈련자료 크기의 영향 분석)

  • Kim, Yeseul;Kwak, Geun-Ho;Lee, Kyung-Do;Na, Sang-Il;Park, Chan-Won;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.5
    • /
    • pp.811-827
    • /
    • 2018
  • The purpose of this study is to compare machine learning algorithm and deep learning algorithm in crop classification using multi-temporal remote sensing data. For this, impacts of machine learning and deep learning algorithms on (a) hyper-parameter and (2) training sample size were compared and analyzed for Haenam-gun, Korea and Illinois State, USA. In the comparison experiment, support vector machine (SVM) was applied as machine learning algorithm and convolutional neural network (CNN) was applied as deep learning algorithm. In particular, 2D-CNN considering 2-dimensional spatial information and 3D-CNN with extended time dimension from 2D-CNN were applied as CNN. As a result of the experiment, it was found that the hyper-parameter values of CNN, considering various hyper-parameter, defined in the two study areas were similar compared with SVM. Based on this result, although it takes much time to optimize the model in CNN, it is considered that it is possible to apply transfer learning that can extend optimized CNN model to other regions. Then, in the experiment results with various training sample size, the impact of that on CNN was larger than SVM. In particular, this impact was exaggerated in Illinois State with heterogeneous spatial patterns. In addition, the lowest classification performance of 3D-CNN was presented in Illinois State, which is considered to be due to over-fitting as complexity of the model. That is, the classification performance was relatively degraded due to heterogeneous patterns and noise effect of input data, although the training accuracy of 3D-CNN model was high. This result simply that a proper classification algorithms should be selected considering spatial characteristics of study areas. Also, a large amount of training samples is necessary to guarantee higher classification performance in CNN, particularly in 3D-CNN.

Statistical Speech Feature Selection for Emotion Recognition

  • Kwon Oh-Wook;Chan Kwokleung;Lee Te-Won
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.4E
    • /
    • pp.144-151
    • /
    • 2005
  • We evaluate the performance of emotion recognition via speech signals when a plain speaker talks to an entertainment robot. For each frame of a speech utterance, we extract the frame-based features: pitch, energy, formant, band energies, mel frequency cepstral coefficients (MFCCs), and velocity/acceleration of pitch and MFCCs. For discriminative classifiers, a fixed-length utterance-based feature vector is computed from the statistics of the frame-based features. Using a speaker-independent database, we evaluate the performance of two promising classifiers: support vector machine (SVM) and hidden Markov model (HMM). For angry/bored/happy/neutral/sad emotion classification, the SVM and HMM classifiers yield $42.3\%\;and\;40.8\%$ accuracy, respectively. We show that the accuracy is significant compared to the performance by foreign human listeners.

People Detection Algorithm in the Beach (해변에서의 사람 검출 알고리즘)

  • Choi, Yu Jung;Kim, Yoon
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.5
    • /
    • pp.558-570
    • /
    • 2018
  • Recently, object detection is a critical function for any system that uses computer vision and is widely used in various fields such as video surveillance and self-driving cars. However, the conventional methods can not detect the objects clearly because of the dynamic background change in the beach. In this paper, we propose a new technique to detect humans correctly in the dynamic videos like shores. A new background modeling method that combines spatial GMM (Gaussian Mixture Model) and temporal GMM is proposed to make more correct background image. Also, the proposed method improve the accuracy of people detection by using SVM (Support Vector Machine) to classify people from the objects and KCF (Kernelized Correlation Filter) Tracker to track people continuously in the complicated environment. The experimental result shows that our method can work well for detection and tracking of objects in videos containing dynamic factors and situations.