• 제목/요약/키워드: SVM 모델

검색결과 398건 처리시간 0.027초

I-벡터 기반 오픈세트 언어 인식을 위한 다중 판별 DNN (Multiple Discriminative DNNs for I-Vector Based Open-Set Language Recognition)

  • 강우현;조원익;강태균;김남수
    • 한국통신학회논문지
    • /
    • 제41권8호
    • /
    • pp.958-964
    • /
    • 2016
  • 본 논문에서는 여러 개의 이원 support vector machine (binary SVM)을 사용하여 세 개 이상의 클래스를 분류하는 multi-class SVM과 유사하게 다중의 판별 deep neural network (DNN) 모델을 사용하는 i-벡터 기반의 언어 인식 시스템을 제안한다. 제안하는 시스템은 NIST 2015 i-vector Machine Learning Challenge 데이터베이스에 포함된 i-벡터들을 이용하여 학습 및 테스트 되었으며, 오픈 세트에서 기존의 cosine distance, multi-class SVM 및 단일 neural network (NN) 기반의 언어 인식 시스템에 비하여 높은 성능을 보임이 확인되었다.

다중 도플러 레이다와 머신러닝을 이용한 손동작 인식 (Hand Gesture Classification Using Multiple Doppler Radar and Machine Learning)

  • 백경진;장병준
    • 한국전자파학회논문지
    • /
    • 제28권1호
    • /
    • pp.33-41
    • /
    • 2017
  • 본 논문에서는 사람의 손동작을 이용해 전자기기를 제어할 수 있도록 다중 도플러 레이다와 머신러닝의 일종인 SVM (Support Vector Machine)을 이용한 손동작 인식 기술을 제안하였다. 하나의 도플러 레이다는 간단한 손동작만을 인식할 수 있는데 반해, 다중 도플러 레이다는 레이다 위치에 따라 각각 다른 도플러 효과가 발생되므로, 이를 이용하여 다양한 손동작을 인식할 수 있다. 또한, 머신러닝 기법을 이용하여 손동작을 분류하면 손동작 인식의 성공률을 높일 수 있다. 다중 도플러 레이다와 머신러닝을 이용한 손동작 인식 시스템의 구현 가능성을 확인하기 위하여 두 개의 도플러 레이다, NI DAQ USB-6008, MATLAB을 이용한 실험 장치를 구성하였다. 구현된 실험 장치를 이용하여 Push, Pull, Right Slide 및 Left Slide의 4가지 손동작 인식 실험을 수행하였고, SVM 모델을 적용하여 손동작 인식의 높은 정확도를 확인하였다.

범주별 태그 안정성을 이용한 태그 부착 자원의 SVM 기반 분류 기법 (A SVM-based Method for Classifying Tagged Web Resources using Tag Stability of Folksonomy in Categories)

  • 고병걸;이강표;김형주
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권6호
    • /
    • pp.414-423
    • /
    • 2009
  • 폭소노미(Folksonomy)는 자유롭게 선택된 키워드의 집합인 태그를 이용하여 이루어지는 협업적 분류로서 웹 2.0의 대표 요소이다. 폭소노미는 기존 분류 방법인 택소노미(Taxonomy)에 비해 적은 비용으로 구축할 수 있다는 장점이 있으나 택소노미에 비해 계층적, 체계적 구조가 부족하다는 단점을 가지고 있다. 이에 폭소노미에 존재하는 집단 지성을 학습하여 웹 자원을 분류할 수 있는 분류기를 구축할 수 있다면 기존 방법인 택소노미를 적은 비용으로 구축할 수 있을 것이다. 본 논문에서는 Slashdot.org에 구축되어 있는 폭소노미를 대상으로 일반적 모델을 정의하고 이 안에서 안정성이 존재함을 보임으로써 분류기를 생성할 수 있는 집단 지성이 폭소노미에 실제로 존재함을 보인다. 그리고 이 집단 지성으로부터 형성되는 범주 별 태그의 특징인 안정성 값을 이용하여 SVM으로 분류기를 구축하는 방법을 제안한다. 실제로 우리가 제안하는 방법으로 폭소노미로부터 높은 정확도로 택소노미를 구축하였음을 실험을 통해 확인하였다.

일반엑스선검사 교육용 시뮬레이터 개발을 위한 기계학습 분류모델 비교 (Comparison of Machine Learning Classification Models for the Development of Simulators for General X-ray Examination Education)

  • 이인자;박채연;이준호
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제45권2호
    • /
    • pp.111-116
    • /
    • 2022
  • In this study, the applicability of machine learning for the development of a simulator for general X-ray examination education is evaluated. To this end, k-nearest neighbor(kNN), support vector machine(SVM) and neural network(NN) classification models are analyzed to present the most suitable model by analyzing the results. Image data was obtained by taking 100 photos each corresponding to Posterior anterior(PA), Posterior anterior oblique(Obl), Lateral(Lat), Fan lateral(Fan lat). 70% of the acquired 400 image data were used as training sets for learning machine learning models and 30% were used as test sets for evaluation. and prediction model was constructed for right-handed PA, Obl, Lat, Fan lat image classification. Based on the data set, after constructing the classification model using the kNN, SVM, and NN models, each model was compared through an error matrix. As a result of the evaluation, the accuracy of kNN was 0.967 area under curve(AUC) was 0.993, and the accuracy of SVM was 0.992 AUC was 1.000. The accuracy of NN was 0.992 and AUC was 0.999, which was slightly lower in kNN, but all three models recorded high accuracy and AUC. In this study, right-handed PA, Obl, Lat, Fan lat images were classified and predicted using the machine learning classification models, kNN, SVM, and NN models. The prediction showed that SVM and NN were the same at 0.992, and AUC was similar at 1.000 and 0.999, indicating that both models showed high predictive power and were applicable to educational simulators.

SVM과 K 접힘 교차 검증 융합 알고리즘 기반의 화재 연기 식별 방법 연구 (Study on fire smoke identification method based on SVM and K fold cross verification fusion algorithm)

  • 왕우동;박상봉;허정화
    • 문화기술의 융합
    • /
    • 제9권5호
    • /
    • pp.843-847
    • /
    • 2023
  • 본 논문은 현대 기술이 발전함에 따라 다양한 화학 제품 및 인화성 물질이 광범위하게 사용되면서 각종 산업재해 및 농지와 대형 산불로 이어질 수 있는 화재 예방을 위해 효율적인 화재 식별을 탐지하는 모델을 제시한다. 본 논문에서는 영상을 활용하여 효율이 높고 빠른 시간안에 화재 연기를 검출할 수 있는 알고리즘을 제시하며, SVM(Support Vector Machine)과 K 접힘 교차 검증 기술을 기반으로 한 알고리즘을 제시한다. 영상을 분석하여 화재 및 연기 검출 알고리즘은 기존의 알고리즘에 비해 상대적으로 검출 성능이 우수하며, 본 논문에서 검출하는 화재 및 연기의 특징 분석이 안정적이고 효율적으로 분석되어 향후 화재 위험에 노출될 수 있는 다양한 분야에서 활용될 것으로 판단된다.

하중유형 분석을 통한 좌굴에 강한 복합재료 사각관 설계에 관한 연구 (Enhancement of Buckling Characteristics for Composite Square Tube by Load Type Analysis)

  • 함석우;지승민;전성식
    • Composites Research
    • /
    • 제36권1호
    • /
    • pp.53-58
    • /
    • 2023
  • PIC 설계 방법은 선행 유한요소해석을 통해 하중 유형을 나누어, 각 구간마다 하중 유형에 강한 복합재료의 적층 각도 순서를 배치하는 방법이다. 기존 연구에서는 효율적으로 구간을 나누기 위하여 PIC 설계 방법에 머신 러닝이 적용되었으며, 학습 데이터는 선행 유한요소해석 결과 값을 통해 전체 요소의 일부인 참조 요소에서의 인장, 압축 그리고 전단과 같은 하중 유형으로 나누어 라벨링 되었다. 하지만 좌굴에 대해 고려되지 않아서 좌굴 발생 시, 적절한 하중 유형으로 나눌 수 없기 때문에 이를 해결하기 위한 방법이 필요하다. 본 연구에서는 좌굴이 고려되기 위한 새로운 하중 유형 분석 방법을 기존의 PIC 설계에 적용하는 기법(PIC-NTL)이 제안되었다. 좌굴의 하중 분석은 각 플라이(Ply)별 응력 3축 특성을 통해 진행되었으며, 요소의 두께 방향으로 동일한 크기의 두 영역으로 나누어진 판단 영역 내에서 결정된 하중 유형을 통해 대표 하중 유형이 지정되었다. 학습 데이터의 특성 값은 참조 요소의 좌표, 라벨(Label)은 각 판단 영역의 대표 하중 유형으로 구성되었으며, 이 데이터를 통해 머신 러닝 모델이 학습되었다. 머신 러닝 모델의 성능에 영향을 미치는 하이퍼파라미터는 베이지안 알고리즘을 통하여 최적 값으로 튜닝되었다. 튜닝 된 머신 러닝 모델의 중 SVM 모델이 가장 높은 예측률과 ROC-AUC로 나타났으며, 해당 모델을 통해 예측된 데이터가 유한요소 모델에 매핑되었다. 기존에 제안된 PIC 설계 방법과 비교하기 위하여 사각관 형태의 모델을 압축시키는 유한요소해석이 진행되었으며, 본 연구에서 제안된 설계 방법이 강도와 에너지 흡수율에서 더 우수함이 검증되었다.

어휘 정보와 구문 패턴에 기반한 단일 클래스 분류 모델 (One-Class Classification Model Based on Lexical Information and Syntactic Patterns)

  • 이현구;최맹식;김학수
    • 정보과학회 논문지
    • /
    • 제42권6호
    • /
    • pp.817-822
    • /
    • 2015
  • 관계 추출은 질의응답 및 지식확장 등에 널리 사용될 수 있는 주요 정보추출 기술이다. 정보추출에 관한 기존 연구들은 관계 범주가 수동으로 부착된 대용량의 학습 데이터를 필요로 하는 지도 학습모델을 기반으로 이루어져 왔다. 최근에는 학습 데이터 구축을 위한 인간의 노력을 줄이기 위해 원거리 감독법이 제안되었다. 그러나 원거리 감독법은 분류 문제를 해결하는데 필수적인 부정 학습 데이터를 수집하기 어렵다는 단점이 있다. 이러한 원거리 감독법의 단점을 극복하기 위해 본 논문에서는 부정 데이터 없이 학습이 가능한 단일 클래스 분류 모델을 제안한다. 입력 데이터로부터 긍정 데이터를 선별하기 위해서 제안 모델은 벡터 공간 상에서 어휘 정보와 구문 패턴에 기반한 유사도 척도를 사용하여 입력 데이터가 내부 범주에 속하는지 그렇지 않은지 판단한다. 실험에서 제안 모델은 대표적인 단일 클래스 분류 모델인 One-class SVM보다 높은 성능(0.6509 F1-점수, 0.6833 정밀도)을 보였다.

주성분 분석과 서포트 벡터 머신을 이용한 폴리스티렌 중합 반응기 이상 진단 모델 개발 (The Development of a Fault Diagnosis Model Based on Principal Component Analysis and Support Vector Machine for a Polystyrene Reactor)

  • 정연수;이창준
    • Korean Chemical Engineering Research
    • /
    • 제60권2호
    • /
    • pp.223-228
    • /
    • 2022
  • 화학공정에서 의도되지 않게 발생하는 이상은 큰 사고를 유발할 수 있다. 이러한 문제를 해결하기 위해, 신속하게 이상의 원인을 감지하고 판별하는 이상 진단 모델이 필요하다. 하지만, 이상 진단을 연구하는 대부분 연구의 경우, 상용프로그램에서 공정 시뮬레이션을 이용하여 이상 데이터를 생성하고 이를 이용하여 연구한 방법론을 적용하고 있다. 이는 실제 공정상에서 이상을 포함하는 실제 데이터를 얻는 데 많은 제약이 있음을 의미한다. 본 연구에서는 실제 폴리스티렌 반응기에서 얻은 이상 데이터와 정상 데이터를 분석하여 적절한 이상 진단 모델을 설계하고자 하였다. 먼저, 정상 데이터를 분석하여 세 가지의 조업 모드가 존재함을 확인하였으며, 모드 판별을 위한 모델을 SVM (Support Vector Machine)을 이용하여 만들었다. 각 조업 모드 별로 PCA (Principal Component Analysis)를 이용하여 이상 진단 모델을 만들었으며, 실제 이상 데이터를 이용하여 계산한 결과 신속하게 이상을 진단할 수 있음을 확인하였다. 본 연구에서 제안한 모델을 통해, 실제 사고가 발생하는 경우 신속한 대처가 가능하며, 이는 잠재적인 손실의 감소에 기여할 수 있음을 의미한다.

인터넷에서의 유해 이미지 컨텐츠 등급 분류 기법 (Classification Method of Harmful Image Content Rates in Internet)

  • 남택용;정치윤;한치문
    • 한국정보과학회논문지:정보통신
    • /
    • 제32권3호
    • /
    • pp.318-326
    • /
    • 2005
  • 본 논문은 인터넷 둥을 통해 유입되는 유해 이미지를 그 특징을 이용하여 무해, 선정, 유해(누드), 심한 유해(성인물)과 같은 이미지 컨텐츠의 등급으로 선별하기 위한 이미지 특징 추출 방법과 이미지분류 기술을 제시한 것이다. 이를 위해 본 논문에서는 입력 이미지에서 유해 정보임을 인식하기 위한 피부 영역 검출 기법을 제시한다. 또한, 노이즈를 줄이고 효과적으로 유해성 정도를 추출하기 위해 관심 영역을 설정하고 그 관심 영역 안에서만 특징을 정의하는 관심 영역 검출 알고리즘을 제안한다. 그리고 이미지를 4 종류의 등급으로 선별하기 위해 유해 이미지 분류 모델을 생성하는 다중 SVM 학습 기법과 생성된 분류 모델을 이용하여 입력 데이타의 유해 등급을 분류하는 다중 SVM 분류 기법을 제시한다. 특히 피부색 영역 이미지의 형태 정보와 피부색 비율 이미지의 색깔정보를 합하여 만든 피부색 가능성 분포 이미지를 제시하고, 이 피부색 가능성 분포 이미지를 축소하여 학습 과정에서 특징 분류를 위해 이용하는 이미지 특성 벡터를 제안한다. 마지막으로 본 논문에서 제안한 유해 이미지 등급 선별 기법을 적용한 실험 결과와 이미지의 유해 둥급 분류에 대한 판별 성능을 평가한다.

러프 하한 근사를 갖는 로컬 커버링 기반 규칙 획득 기법을 이용한 섬망 환자의 분류 방법 (A Classification Method of Delirium Patients Using Local Covering-Based Rule Acquisition Approach with Rough Lower Approximation)

  • 손창식;강원석;이종하;문경자
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권4호
    • /
    • pp.137-144
    • /
    • 2020
  • 섬망은 의식 장애, 주의력 장애 및 언어력 장애와 같은 일시적인 인지 장애가 있는 환자, 특히 노인에서 나타나는 가장 흔한 정신 장애 중 하나이다. 섬망은 환자와 가족에게 고통을 주고, 통증과 같은 증상의 관리를 방해할 수 있으며 노인 사망률 증가와 관련이 있다. 본 논문의 목적은 장기 요양 시설에서 섬망 환자를 구별하는데 사용될 수 있는 유용한 임상적 지식을 생성하는데 있다. 이러한 목적을 위해, 러프 하한 근사 영역을 갖는 로컬 커버링 규칙 기법을 활용하여 섬망과 관련된 임상적 분류 지식을 추출하였다. 제안된 방법의 임상적 적용 가능성은 전향적 코호트 연구로부터 수집된 데이터를 활용하여 확인하였다. 연구 결과, 섬망 기간이 12일 이상 지속될 수 있는 6가지 유용한 임상적 증거를 발견하였고, 체질량 지수, 동반질환 지수, 입원경로, 영양결핍, 감염, 수면박탈, 욕창, 기저귀 사용과 같은 8가지 인자들이 섬망 결과를 구별하는 데 중요한 요인이라는 것을 확인하였다. 제안된 방법의 분류 성능은 통계적 5-겹 교차검정 방법을 사용하여 3가지 벤치마킹 모델, 즉 ANN, RBF 커널 함수를 활용한 SVM, 랜덤 포레스트와 비교하여 검증하였다. 제안된 방법은 3가지 모델 중 가장 높은 성능을 제공한 SVM 모델과 비교했을 때 정확도와 AUC 기준에서 평균 0.6%와 2.7% 개선된 성능을 보였다.