본 논문에서는 여러 개의 이원 support vector machine (binary SVM)을 사용하여 세 개 이상의 클래스를 분류하는 multi-class SVM과 유사하게 다중의 판별 deep neural network (DNN) 모델을 사용하는 i-벡터 기반의 언어 인식 시스템을 제안한다. 제안하는 시스템은 NIST 2015 i-vector Machine Learning Challenge 데이터베이스에 포함된 i-벡터들을 이용하여 학습 및 테스트 되었으며, 오픈 세트에서 기존의 cosine distance, multi-class SVM 및 단일 neural network (NN) 기반의 언어 인식 시스템에 비하여 높은 성능을 보임이 확인되었다.
본 논문에서는 사람의 손동작을 이용해 전자기기를 제어할 수 있도록 다중 도플러 레이다와 머신러닝의 일종인 SVM (Support Vector Machine)을 이용한 손동작 인식 기술을 제안하였다. 하나의 도플러 레이다는 간단한 손동작만을 인식할 수 있는데 반해, 다중 도플러 레이다는 레이다 위치에 따라 각각 다른 도플러 효과가 발생되므로, 이를 이용하여 다양한 손동작을 인식할 수 있다. 또한, 머신러닝 기법을 이용하여 손동작을 분류하면 손동작 인식의 성공률을 높일 수 있다. 다중 도플러 레이다와 머신러닝을 이용한 손동작 인식 시스템의 구현 가능성을 확인하기 위하여 두 개의 도플러 레이다, NI DAQ USB-6008, MATLAB을 이용한 실험 장치를 구성하였다. 구현된 실험 장치를 이용하여 Push, Pull, Right Slide 및 Left Slide의 4가지 손동작 인식 실험을 수행하였고, SVM 모델을 적용하여 손동작 인식의 높은 정확도를 확인하였다.
폭소노미(Folksonomy)는 자유롭게 선택된 키워드의 집합인 태그를 이용하여 이루어지는 협업적 분류로서 웹 2.0의 대표 요소이다. 폭소노미는 기존 분류 방법인 택소노미(Taxonomy)에 비해 적은 비용으로 구축할 수 있다는 장점이 있으나 택소노미에 비해 계층적, 체계적 구조가 부족하다는 단점을 가지고 있다. 이에 폭소노미에 존재하는 집단 지성을 학습하여 웹 자원을 분류할 수 있는 분류기를 구축할 수 있다면 기존 방법인 택소노미를 적은 비용으로 구축할 수 있을 것이다. 본 논문에서는 Slashdot.org에 구축되어 있는 폭소노미를 대상으로 일반적 모델을 정의하고 이 안에서 안정성이 존재함을 보임으로써 분류기를 생성할 수 있는 집단 지성이 폭소노미에 실제로 존재함을 보인다. 그리고 이 집단 지성으로부터 형성되는 범주 별 태그의 특징인 안정성 값을 이용하여 SVM으로 분류기를 구축하는 방법을 제안한다. 실제로 우리가 제안하는 방법으로 폭소노미로부터 높은 정확도로 택소노미를 구축하였음을 실험을 통해 확인하였다.
In this study, the applicability of machine learning for the development of a simulator for general X-ray examination education is evaluated. To this end, k-nearest neighbor(kNN), support vector machine(SVM) and neural network(NN) classification models are analyzed to present the most suitable model by analyzing the results. Image data was obtained by taking 100 photos each corresponding to Posterior anterior(PA), Posterior anterior oblique(Obl), Lateral(Lat), Fan lateral(Fan lat). 70% of the acquired 400 image data were used as training sets for learning machine learning models and 30% were used as test sets for evaluation. and prediction model was constructed for right-handed PA, Obl, Lat, Fan lat image classification. Based on the data set, after constructing the classification model using the kNN, SVM, and NN models, each model was compared through an error matrix. As a result of the evaluation, the accuracy of kNN was 0.967 area under curve(AUC) was 0.993, and the accuracy of SVM was 0.992 AUC was 1.000. The accuracy of NN was 0.992 and AUC was 0.999, which was slightly lower in kNN, but all three models recorded high accuracy and AUC. In this study, right-handed PA, Obl, Lat, Fan lat images were classified and predicted using the machine learning classification models, kNN, SVM, and NN models. The prediction showed that SVM and NN were the same at 0.992, and AUC was similar at 1.000 and 0.999, indicating that both models showed high predictive power and were applicable to educational simulators.
본 논문은 현대 기술이 발전함에 따라 다양한 화학 제품 및 인화성 물질이 광범위하게 사용되면서 각종 산업재해 및 농지와 대형 산불로 이어질 수 있는 화재 예방을 위해 효율적인 화재 식별을 탐지하는 모델을 제시한다. 본 논문에서는 영상을 활용하여 효율이 높고 빠른 시간안에 화재 연기를 검출할 수 있는 알고리즘을 제시하며, SVM(Support Vector Machine)과 K 접힘 교차 검증 기술을 기반으로 한 알고리즘을 제시한다. 영상을 분석하여 화재 및 연기 검출 알고리즘은 기존의 알고리즘에 비해 상대적으로 검출 성능이 우수하며, 본 논문에서 검출하는 화재 및 연기의 특징 분석이 안정적이고 효율적으로 분석되어 향후 화재 위험에 노출될 수 있는 다양한 분야에서 활용될 것으로 판단된다.
PIC 설계 방법은 선행 유한요소해석을 통해 하중 유형을 나누어, 각 구간마다 하중 유형에 강한 복합재료의 적층 각도 순서를 배치하는 방법이다. 기존 연구에서는 효율적으로 구간을 나누기 위하여 PIC 설계 방법에 머신 러닝이 적용되었으며, 학습 데이터는 선행 유한요소해석 결과 값을 통해 전체 요소의 일부인 참조 요소에서의 인장, 압축 그리고 전단과 같은 하중 유형으로 나누어 라벨링 되었다. 하지만 좌굴에 대해 고려되지 않아서 좌굴 발생 시, 적절한 하중 유형으로 나눌 수 없기 때문에 이를 해결하기 위한 방법이 필요하다. 본 연구에서는 좌굴이 고려되기 위한 새로운 하중 유형 분석 방법을 기존의 PIC 설계에 적용하는 기법(PIC-NTL)이 제안되었다. 좌굴의 하중 분석은 각 플라이(Ply)별 응력 3축 특성을 통해 진행되었으며, 요소의 두께 방향으로 동일한 크기의 두 영역으로 나누어진 판단 영역 내에서 결정된 하중 유형을 통해 대표 하중 유형이 지정되었다. 학습 데이터의 특성 값은 참조 요소의 좌표, 라벨(Label)은 각 판단 영역의 대표 하중 유형으로 구성되었으며, 이 데이터를 통해 머신 러닝 모델이 학습되었다. 머신 러닝 모델의 성능에 영향을 미치는 하이퍼파라미터는 베이지안 알고리즘을 통하여 최적 값으로 튜닝되었다. 튜닝 된 머신 러닝 모델의 중 SVM 모델이 가장 높은 예측률과 ROC-AUC로 나타났으며, 해당 모델을 통해 예측된 데이터가 유한요소 모델에 매핑되었다. 기존에 제안된 PIC 설계 방법과 비교하기 위하여 사각관 형태의 모델을 압축시키는 유한요소해석이 진행되었으며, 본 연구에서 제안된 설계 방법이 강도와 에너지 흡수율에서 더 우수함이 검증되었다.
관계 추출은 질의응답 및 지식확장 등에 널리 사용될 수 있는 주요 정보추출 기술이다. 정보추출에 관한 기존 연구들은 관계 범주가 수동으로 부착된 대용량의 학습 데이터를 필요로 하는 지도 학습모델을 기반으로 이루어져 왔다. 최근에는 학습 데이터 구축을 위한 인간의 노력을 줄이기 위해 원거리 감독법이 제안되었다. 그러나 원거리 감독법은 분류 문제를 해결하는데 필수적인 부정 학습 데이터를 수집하기 어렵다는 단점이 있다. 이러한 원거리 감독법의 단점을 극복하기 위해 본 논문에서는 부정 데이터 없이 학습이 가능한 단일 클래스 분류 모델을 제안한다. 입력 데이터로부터 긍정 데이터를 선별하기 위해서 제안 모델은 벡터 공간 상에서 어휘 정보와 구문 패턴에 기반한 유사도 척도를 사용하여 입력 데이터가 내부 범주에 속하는지 그렇지 않은지 판단한다. 실험에서 제안 모델은 대표적인 단일 클래스 분류 모델인 One-class SVM보다 높은 성능(0.6509 F1-점수, 0.6833 정밀도)을 보였다.
화학공정에서 의도되지 않게 발생하는 이상은 큰 사고를 유발할 수 있다. 이러한 문제를 해결하기 위해, 신속하게 이상의 원인을 감지하고 판별하는 이상 진단 모델이 필요하다. 하지만, 이상 진단을 연구하는 대부분 연구의 경우, 상용프로그램에서 공정 시뮬레이션을 이용하여 이상 데이터를 생성하고 이를 이용하여 연구한 방법론을 적용하고 있다. 이는 실제 공정상에서 이상을 포함하는 실제 데이터를 얻는 데 많은 제약이 있음을 의미한다. 본 연구에서는 실제 폴리스티렌 반응기에서 얻은 이상 데이터와 정상 데이터를 분석하여 적절한 이상 진단 모델을 설계하고자 하였다. 먼저, 정상 데이터를 분석하여 세 가지의 조업 모드가 존재함을 확인하였으며, 모드 판별을 위한 모델을 SVM (Support Vector Machine)을 이용하여 만들었다. 각 조업 모드 별로 PCA (Principal Component Analysis)를 이용하여 이상 진단 모델을 만들었으며, 실제 이상 데이터를 이용하여 계산한 결과 신속하게 이상을 진단할 수 있음을 확인하였다. 본 연구에서 제안한 모델을 통해, 실제 사고가 발생하는 경우 신속한 대처가 가능하며, 이는 잠재적인 손실의 감소에 기여할 수 있음을 의미한다.
본 논문은 인터넷 둥을 통해 유입되는 유해 이미지를 그 특징을 이용하여 무해, 선정, 유해(누드), 심한 유해(성인물)과 같은 이미지 컨텐츠의 등급으로 선별하기 위한 이미지 특징 추출 방법과 이미지분류 기술을 제시한 것이다. 이를 위해 본 논문에서는 입력 이미지에서 유해 정보임을 인식하기 위한 피부 영역 검출 기법을 제시한다. 또한, 노이즈를 줄이고 효과적으로 유해성 정도를 추출하기 위해 관심 영역을 설정하고 그 관심 영역 안에서만 특징을 정의하는 관심 영역 검출 알고리즘을 제안한다. 그리고 이미지를 4 종류의 등급으로 선별하기 위해 유해 이미지 분류 모델을 생성하는 다중 SVM 학습 기법과 생성된 분류 모델을 이용하여 입력 데이타의 유해 등급을 분류하는 다중 SVM 분류 기법을 제시한다. 특히 피부색 영역 이미지의 형태 정보와 피부색 비율 이미지의 색깔정보를 합하여 만든 피부색 가능성 분포 이미지를 제시하고, 이 피부색 가능성 분포 이미지를 축소하여 학습 과정에서 특징 분류를 위해 이용하는 이미지 특성 벡터를 제안한다. 마지막으로 본 논문에서 제안한 유해 이미지 등급 선별 기법을 적용한 실험 결과와 이미지의 유해 둥급 분류에 대한 판별 성능을 평가한다.
섬망은 의식 장애, 주의력 장애 및 언어력 장애와 같은 일시적인 인지 장애가 있는 환자, 특히 노인에서 나타나는 가장 흔한 정신 장애 중 하나이다. 섬망은 환자와 가족에게 고통을 주고, 통증과 같은 증상의 관리를 방해할 수 있으며 노인 사망률 증가와 관련이 있다. 본 논문의 목적은 장기 요양 시설에서 섬망 환자를 구별하는데 사용될 수 있는 유용한 임상적 지식을 생성하는데 있다. 이러한 목적을 위해, 러프 하한 근사 영역을 갖는 로컬 커버링 규칙 기법을 활용하여 섬망과 관련된 임상적 분류 지식을 추출하였다. 제안된 방법의 임상적 적용 가능성은 전향적 코호트 연구로부터 수집된 데이터를 활용하여 확인하였다. 연구 결과, 섬망 기간이 12일 이상 지속될 수 있는 6가지 유용한 임상적 증거를 발견하였고, 체질량 지수, 동반질환 지수, 입원경로, 영양결핍, 감염, 수면박탈, 욕창, 기저귀 사용과 같은 8가지 인자들이 섬망 결과를 구별하는 데 중요한 요인이라는 것을 확인하였다. 제안된 방법의 분류 성능은 통계적 5-겹 교차검정 방법을 사용하여 3가지 벤치마킹 모델, 즉 ANN, RBF 커널 함수를 활용한 SVM, 랜덤 포레스트와 비교하여 검증하였다. 제안된 방법은 3가지 모델 중 가장 높은 성능을 제공한 SVM 모델과 비교했을 때 정확도와 AUC 기준에서 평균 0.6%와 2.7% 개선된 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.