• Title/Summary/Keyword: SVDD

Search Result 50, Processing Time 0.036 seconds

One-Class Support Vector Learning and Linear Matrix Inequalities

  • Park, Jooyoung;Kim, Jinsung;Lee, Hansung;Park, Daihee
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.100-104
    • /
    • 2003
  • The SVDD(support vector data description) is one of the most well-known one-class support vector learning methods, in which one tries the strategy of utilizing balls defined on the kernel feature space in order to distinguish a set of normal data from all other possible abnormal objects. The major concern of this paper is to consider the problem of modifying the SVDD into the direction of utilizing ellipsoids instead of balls in order to enable better classification performance. After a brief review about the original SVDD method, this paper establishes a new method utilizing ellipsoids in feature space, and presents a solution in the form of SDP(semi-definite programming) which is an optimization problem based on linear matrix inequalities.

Real-time Face Detection System using Cascade structure and SVDD (단계형 구조와 SVDD를 이용한 실시간 얼굴 탐지 시스템)

  • Song Jiyoung;Lee Hansung;Im Younghee;Park Daihee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.763-765
    • /
    • 2005
  • 본 논문에서는 점증적 분류 성능을 갖는 단계형(cascade) 분류기를 이용한 새로운 실시간 얼굴 탐지시스템을 제안하고자 한다. 제안된 시스템의 첫 단계는 전처리 단계로써 매우 빠른 속도를 갖는 새로운 피부색 탐지기를 이용하여 탐색 공간을 대폭 축소하고, 두 번째 단계에서는 빠른 분류가 가능한 유사-하(Haar-like) 특징을 이용한 단계형 분류기를 배치하여 빠른 속도로 후보 얼굴을 검출한다. 마지막 단계에서는 탐지율을 높이기 위해 단일 클래스 SVM인 SVDD를 분류기로 사용하였으며, 실험을 통하여 제안된 시스템의 우수성을 보인다.

  • PDF

Face Recognition System with SVDD-based Incremental Learning Scheme (SVDD기반의 점진적 학습기능을 갖는 얼굴인식 시스템)

  • Kang, Woo-Sung;Na, Jin-Hee;Ahn, Ho-Seok;Choi, Jin-Young
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.1
    • /
    • pp.66-72
    • /
    • 2006
  • In face recognition, learning speed of face is very important since the system should be trained again whenever the size of dataset increases. In existing methods, training time increases rapidly with the increase of data, which leads to the difficulty of training with a large dataset. To overcome this problem, we propose SVDD (Support Vector Domain Description)-based learning method that can learn a dataset of face rapidly and incrementally. In experimental results, we show that the training speed of the proposed method is much faster than those of other methods. Moreover, it is shown that our face recognition system can improve the accuracy gradually by learning faces incrementally at real environments with illumination changes.

  • PDF

Pattern extraction method using SVDD-based weighted (SVDD 기반 가중치를 이용한 패턴 추출 방법)

  • Yoon, Tae-Bok;Lee, Jee-Hyong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.323-324
    • /
    • 2011
  • 데이터 마이닝은 주어진 데이터로부터 의미 있는 정보를 찾기 위한 방법으로 주로 사용된다. 하지만, 분석을 위한 데이터에 의미 없는 정보가 포함되어 있다면 분석 결과를 신뢰 할 수 없을 것이다. 이를 위해서 의미 없는 데이터를 제거하기 위한 연구 사례가 있으나, 정상적인 데이터도 함께 제거될 수 있다는 단점이 있다. 본 논문은 패턴 추출을 위한 분석 데이터를 SVDD 방법을 이용하여 의미 있는 데이터와 의미 없는 데이터 간에 가중치를 구한다. 생성된 가중치는 의사결정나무 생성에 반영하였고, 실험을 통하여 유효성을 확인하였다.

Design of Accident Cause Analysis Model for Electric Scooters Using Deep SVDD (Deep SVDD를 활용한 전동킥보드 사고 원인 분석 모델 설계)

  • Ye-Won Cha;Jin-Suk Bang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.1228-1229
    • /
    • 2023
  • 현대 도시 모빌리티의 중요한 구성 요소로 자리 잡은 전동킥보드는 편리한 이동 수단으로 인기를 얻고 있으나, 이에 따른 안전사고 증가로 운전자와 보행자의 안전이 심각하게 위협받고 있다. 본 논문에서는 전동킥보드 운전 중에 발생한 사고의 원인을 객관적으로 분석하고, 사고가 운전자의 부주의로 인한 것인지를 판별하며, 이로 인한 배상 책임을 정확하게 결정하기 위한 모델을 제안한다. 운전 중 수집된 센서 데이터를 활용하여 Deep SVDD (Deep Support Vector Data Description) 모델을 구축하고, 이상치 탐지를 통해 운전 패턴을 분류하며 운전자의 부주의로 인한 사고를 파악한다. 이를 통해, 정확하고 공정한 배상 책임 판단을 지원하며, 도시 모빌리티 분야에서 안전사고 감소에 기여할 것으로 기대된다.

A Fake-Iris Detection Method using SVDD (단일 클래스 분류기를 이용한 위조 홍채 검출 방법)

  • Lee, Sung-Joo;Kim, Jai-Hie
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.287-288
    • /
    • 2007
  • In this paper, we propose a fake-iris detection method. In order to detect the fake-iris, we measure physiological features which are the reflectance ratio of the iris to the sclera at 750 nm and that at 850nm. In order to classify live and fake iris features, we use support vector data description (SVDD). From our experimental results, it is clear that our fake-iris detection method achieves high performance when distinguishing between a live-iris and a fake-iris.

  • PDF

Unusual Behavior Detection of Korean Cows using Motion Vector and SVDD in Video Surveillance System (움직임 벡터와 SVDD를 이용한 영상 감시 시스템에서 한우의 특이 행동 탐지)

  • Oh, Seunggeun;Park, Daihee;Chang, Honghee;Chung, Yongwha
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.11
    • /
    • pp.795-800
    • /
    • 2013
  • Early detection of oestrus in Korean cows is one of the important issues in maximizing the economic benefit. Although various methods have been proposed, we still need to improve the performance of the oestrus detection system. In this paper, we propose a video surveillance system which can detect unusual behavior of multiple cows including the mounting activity. The unusual behavior detection is to detect the dangerous or abnormal situations of cows in video coming in real time from a surveillance camera promptly and correctly. The prototype system for unusual behavior detection gets an input video from a fixed location camera, and uses the motion vector to represent the motion information of cows in video, and finally selects a SVDD (one of the most well-known types of one-class SVM) as a detector by reinterpreting the unusual behavior into an one class decision problem from the practical points of view. The experimental results with the videos obtained from a farm located in Jinju illustrate the efficiency of the proposed method.

Detection of Traffic Flooding Attacks using SVDD and SNMP MIB (SVDD와 SNMP MIB을 이용한 트래픽 폭주 공격의 탐지)

  • Yu, Jae-Hak;Park, Jun-Sang;Lee, Han-Sung;Kim, Myung-Sup;Park, Dai-Hee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06a
    • /
    • pp.124-127
    • /
    • 2008
  • DoS/DDoS로 대표되는 트래픽 폭주 공격은 대상 시스템뿐만 아니라 네트워크 대역폭, 프로세서 처리능력, 시스템 자원 등에 악영향을 줌으로써 네트워크에 심각한 장애를 유발할 수 있다. 따라서 신속한 트래픽 폭주 공격의 탐지는 안정적인 서비스 제공 및 시스템 운영에 필수요건이다. 전통적인 패킷 수집을 통한 DoS/DDoS의 탐지방법은 공격에 대한 상세한 분석은 가능하나 설치의 확장성 부족, 고가의 고성능 분석시스템의 요구, 신속한 탐지를 보장하지 못한다는 문제점을 갖고 있다. 본 논문에서는 15초 단위의 SNMP MIB 객체 정보를 바탕으로 SVDD(support vector data description)를 이용하여 보다 빠르고 정확한 침입탐지와 쉬운 확장성, 저비용탐지 및 정확한 공격유형별 분류를 가능케 하는 새로운 시스템을 설계 및 구현하였다. 실험을 통하여 만족스러운 침입 탐지율과 안전한 false negative rate, 공격유형별 분류율 수치 등을 확인함으로써 제안된 시스템의 성능을 검증하였다.

  • PDF

Abnormal Crowd Behavior Detection in Video Surveillance System (영상 감시 시스템에서의 비정상 집단행동 탐지)

  • Park, Seung-Jin;Oh, Seung-Geun;Kang, Bong-Su;Park, Dai-Hee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.347-350
    • /
    • 2011
  • 감시카메라 환경에서의 비정상 집단행동 탐지란 감시카메라로부터 유입되는 영상에서 다중 객체가 위험에 처한 상황을 신속하고 정확하게 탐지 및 인식하는 분야를 말한다. 본 논문에서는 CCTV 등과 같은 감시카메라 환경에서 움직임 벡터와 SVDD를 이용하여 집단내의 비정상 상황을 탐지하는 프로토타입 시스템을 제안한다. 제안된 시스템은 움직임 벡터를 이용하여 영상내의 움직임 정보를 추출 표현하였으며, 비정상 집단행동의 판별 문제를 실용적 차원의 단일 클래스 분류 문제로 재해석하여 단일 클래스 SVM의 대표적 모델인 SVDD를 탐지자로 설계하였다. 공개적으로 사용 가능한 벤치마크 데이터 셋인 PETS 2009와 UMN을 이용하여 본 논문에서 제안한 비정상 집단행동 탐지 시스템의 성능을 실험적으로 검증한다.

Abnormal Sound Detection and Identification in Surveillance System (감시 시스템에서의 비정상 소리 탐지 및 식별)

  • Joo, Young-min;Lee, Eui-jong;Kim, Jeong-sik;Oh, Seung-geun;Park, Dai-hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.592-595
    • /
    • 2010
  • 본 논문에서는 감시카메라 환경에서 취득한 오디오 데이터를 입력으로 하여, 비정상 상황을 인식하는 시스템을 제안한다. 제안된 시스템은 단일클래스 SVM의 대표적인 모델인 SVDD와 최근 얼굴 인식 분야에서 성공적인 업적을 보여주고 있는 신호 처리 분야의 SRC를 계층적으로 결합한 구조로써, 첫 번째 계층에서는 SVDD로 비정상 소리를 신속하게 탐지하여 관리자에게 알람 경고하고, 두 번째 계층의 SRC는 탐지된 비정상 소리를 유형별로 세분화 식별하여 관리자에게 비상 상황을 보고함으로써 관리자의 위기 상황 대처를 돕는다. 제안된 시스템은 실시간 처리가 가능하며, 점증적 갱신의 학습 능력으로 인하여 비정상 오디오 데이터베이스의 변화에도 능동적으로 적응할 수 있다. 실험을 통하여 제안된 시스템의 성능을 검증한다.