• 제목/요약/키워드: SVDD

검색결과 50건 처리시간 0.034초

D-SVDD를 이용한 패턴 노이즈 제거 (Pattern De-Noising using D-SVDD)

  • 강대성;박주영
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 추계학술대회 학술발표 논문집 제16권 제2호
    • /
    • pp.61-64
    • /
    • 2006
  • SVDD(support vector data description)는 one-class 서포트 벡터 학습 방법론 중 하나로 비정상 물체에서 정상 데이터를 구분하기 위해서 특징 공간(feature space)에서 정의된 구를 이용하는 전략을 쓰는 방법론이다. 하지만 SVDD는 모든 데이터에 대해서 같은 중요도를 부가하는 단점을 가지고 있다. 최근에, 이런 문제점을 보완하기 위해 데이터의 밀도 분포에 따라서 중요도를 다르게 부가하는 D-SVDD(density-induced support vector data description) 방법론이 발표되었고, 아직도 많은 연구가 진행되고 있다. 본 논문에서는 D-SVDD를 이용해서 노이즈가 섞인 비정상 데이터를 노이즈가 제거된 정상 데이터로 복원하는 방법에 대해서 논한다. 특히, 본 논문에서 제안하는 방법론을 다른 방법론과 비교하여 본 논문의 방법론의 효용성에 대해서 다룬다.

  • PDF

컬러 영상에서 Support Vector Domain Description을 이용한 얼굴 검출 (Face Detection Using Support Vector Domain Description in Color Images)

  • 서진;고한석
    • 대한전자공학회논문지SP
    • /
    • 제42권1호
    • /
    • pp.25-31
    • /
    • 2005
  • 본 논문에서는 컬러 영상에서 Support Vector Domain Description (SVDD)를 이용한 얼굴 검출 방법을 제안한다. 기존의 훈련을 통한 얼굴 검출 방법은 얼굴 영상과 얼굴이 아닌 영상을 모두 사용해야 한다. 그러나, SVDD를 이용한 얼굴 검출은 단지 훈련을 위해 얼굴 영상만이 사용된다. SVDD의 훈련을 통해 나오는 값인 반지름과 중심 좌표를 통해 얼굴을 검출한다. 또한, 엔트로피를 이용한 임계값 추출 방법(Entropic Threshold)을 통해 얼굴 특징을 추출하고, 슬라이딩 윈도우(sliding window)기법을 통해 성능을 개선한다. 주성분 분석(Principle Component Analysis) 과 SVDD를 이용한 얼굴 검출 방법의 비교 실험을 통해 본 논문이 제안한 방법의 효율성을 확인한다.

A Modified Approach to Density-Induced Support Vector Data Description

  • Park, Joo-Young;Kang, Dae-Sung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제7권1호
    • /
    • pp.1-6
    • /
    • 2007
  • The SVDD (support vector data description) is one of the most well-known one-class support vector learning methods, in which one tries the strategy of utilizing balls defined on the feature space in order to distinguish a set of normal data from all other possible abnormal objects. Recently, with the objective of generalizing the SVDD which treats all training data with equal importance, the so-called D-SVDD (density-induced support vector data description) was proposed incorporating the idea that the data in a higher density region are more significant than those in a lower density region. In this paper, we consider the problem of further improving the D-SVDD toward the use of a partial reference set for testing, and propose an LMI (linear matrix inequality)-based optimization approach to solve the improved version of the D-SVDD problems. Our approach utilizes a new class of density-induced distance measures based on the RSDE (reduced set density estimator) along with the LMI-based mathematical formulation in the form of the SDP (semi-definite programming) problems, which can be efficiently solved by interior point methods. The validity of the proposed approach is illustrated via numerical experiments using real data sets.

LBG-SVDD을 이용한 침입탐지 기법 (Intrusion Detection System Using LBG-SVDD)

  • 유승도;박귀태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1913-1914
    • /
    • 2008
  • 최근 유비쿼터스 네트워크에 대한 관심이 높아지고 있다. 하지만 유비쿼터스 네트워크는 무선으로 데이터를 전송함으로서 특성상 쉽게 침입자들로부터 침입을 당할 수 있는 보안 문제가 중요하게 대두되고 있다. 이에 따라 강력한 침입탐지 기술에 대한 요구가 증가되고 있다. 본 논문에서는 갈수록 늘어나는 새로운 변형 공격에 대한 탐지를 위하여 LBG-SVDD을 이용한 침입탐지 기법을 제안한다. LBG-SVDD은 새로운 변형 공격 침입 탐지가 발견되었을 때, 새로운 변형 공격 형태에 대한 빠른 학습 훈련을 통해 공격 침입 탐지를 할 수 있다.

  • PDF

SVDD 기반 중요문서 변조 유출 탐지 알고리즘 (An Algorithm for Detecting Leak of Defaced Confidential Information Based on SVDD)

  • 길지호;남기효;강형석;김성인
    • 정보보호학회논문지
    • /
    • 제20권1호
    • /
    • pp.105-111
    • /
    • 2010
  • 본 논문은 보호하고자 하는 중요문서의 다양한 변조를 통한 유출시도를 정확히 탐지하는 알고리즘을 제시한다. 중요문서는 내부자에 의해 다양한 방법으로 변조된 후 유출이 시도되고 있으나, 중요문서 유출탐지에 관한 기존 연구들은 유사도를 기반으로 함으로써 중요정보에 대한 다양한 변조 형태를 정확히 반영하지 못하여 탐지 정확도가 떨어지는 단점이 있다. 본 연구는 이를 해결하기 위해 SVDD(Support Vector Data Description)을 이용한 새로운 중요문서 유출 탐지 알고리즘인 v-SVDD 알고리즘을 제시한다. 본 연구에서 제시한 알고리즘 수행결과는 기존 연구결과와 비교할 때 변조 유출 탐지 측면에서 우수한 정확도를 보여준다.

KMSVDD: K-means Clustering을 이용한 Support Vector Data Description (KMSVOD: Support Vector Data Description using K-means Clustering)

  • 김표재;장형진;송동성;최진영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.90-92
    • /
    • 2006
  • 기존의 Support Vector Data Description (SVDD) 방법은 학습 데이터의 개수가 증가함에 따라 학습 시간이 지수 함수적으로 증가하므로, 대량의 데이터를 학습하는 데에는 한계가 있었다. 본 논문에서는 학습 속도를 빠르게 하기 위해 K-means clustering 알고리즘을 이용하는 SVDD 알고리즘을 제안하고자 한다. 제안된 알고리즘은 기존의 decomposition 방법과 유사하게 K-means clustering 알고리즘을 이용하여 학습 데이터 영역을 sub-grouping한 후 각각의 sub-group들을 개별적으로 학습함으로써 계산량 감소 효과를 얻는다. 이러한 sub-grouping 과정은 hypersphere를 이용하여 학습 데이터를 둘러싸는 SVDD의 학습 특성을 훼손시키지 않으면서 중심점으로 모여진 작은 영역의 학습 데이터를 학습하도록 함으로써, 기존의 SVDD와 비교하여 학습 정확도의 차이 없이 빠른 학습을 가능하게 한다. 다양한 데이터들을 이용한 모의실험을 통하여 그 효과를 검증하도록 한다.

  • PDF

SVDD기법을 이용한 하이브리드 전기자동차 충-방전시스템의 고장검출 알고리듬 (Fault Detection Algorithm of Charge-discharge System of Hybrid Electric Vehicle Using SVDD)

  • 나상건;양인범;허훈
    • 한국소음진동공학회논문집
    • /
    • 제21권11호
    • /
    • pp.997-1004
    • /
    • 2011
  • A fault detection algorithm of a charge and discharge system to ensure the safe use of hybrid electric vehicle is proposed in this paper. This algorithm can be used as a complementary way to existing fault detection technique for a charge and discharge system. The proposed algorithm uses a SVDD technique, which additionally utilizes two methods for learning a large amount of data; one is to incrementally learn a large amount of data, the other one is to remove the data that does not affect the next learning using a new data reduction technique. Removal of data is selected by using lines connecting support vectors. In the proposed method, the data processing speed is drastically improved and the storage space used is remarkably reduced than the conventional methods using the SVDD technique only. A battery data and speed data of a commercial hybrid electrical vehicle are utilized in this study. A fault boundary is produced via SVDD techniques using the input and output in normal operation of the system without using mathematical modeling. A fault detection simulation is performed using both an artificial fault data and the obtained fault boundary via SVDD techniques. In the fault detection simulation, fault detection time via proposed algorithm is compared with that of the peak-peak method. Also the proposed algorithm is revealed to detect fault in the region where conventional peak-peak method is never able to do.

비정상 상태 탐지 문제를 위한 서포트벡터 학습 (Support Vector Learning for Abnormality Detection Problems)

  • 박주영;임채환
    • 한국지능시스템학회논문지
    • /
    • 제13권3호
    • /
    • pp.266-274
    • /
    • 2003
  • 본 논문은 비정상 상태 탐지 문제를 위한 점증적 서포트 벡터 학습을 다룬다. 비정상상태 탐지를 위한 서포트 벡터 학습 중 가장 잘 알려진 기법 중 하나는 SVDD(support vector data description)인데, 이 기법은 정상적인 데이터의 집합을 모든 가능한 비정상 개체로부터 구분하기 위하여 커널 특징공간(kernel feature space) 위에서 정의되는 볼(ball)을 이용하는 전략을 추구한다. 본 논문의 주된 관심사는 최적해와 점증적으로 주어지는 학습 데이터의 상관관계를 이용하는 방향으로 SVDD 기법을 수정하는 것이다. 본 논문에서는, 기존의 SVDD 기법을 상세히 복습한 후에, 라그랑제 쌍대 문제(Largrange dual problem)에 관한 관찰을 바탕으로 최적 해를 찾기 위한 점증적 풀이 기법을 제시한다. 그리고, 제시된 점증적 방법론의 적용 가능성이 예제를 통하여 보여진다.

H.264 압축과 SVDD를 이용한 영상 감시 시스템에서의 비정상 집단행동 탐지 (Abnormal Crowd Behavior Detection via H.264 Compression and SVDD in Video Surveillance System)

  • 오승근;이종욱;정용화;박대희
    • 정보보호학회논문지
    • /
    • 제21권6호
    • /
    • pp.183-190
    • /
    • 2011
  • 감시카메라 환경에서 군중의 비정상 집단행동 탐지란 감시카메라로부터 유입되는 영상에서 다중 객체가 위험에 처한 상황을 신속하고 정확하게 탐지하는 분야를 말한다. 본 논문에서는 CCTV 등과 같은 감시카메라 환경에서 움직임 벡터와 SVDD를 이용하여 집단내의 비정상 상황을 탐지하는 프로토타입 시스템을 제안한다. 제안된 시스템은 H.264 압축과정에서의 움직임 벡터 정보를 이용하여 영상내의 움직임 정보를 추출 표현하였으며, 비정상 집단행동의 판별 문제를 실용적 차원의 단일 클래스 분류 문제로 재해석하여 단일 클래스 SVM의 대표적 모델인 SVDD를 탐지기로 설계하였다. 제안된 시스템은 H.264 압축 과정에서 얻어지는 움직임 벡터를 이용함으로써, 실시간성을 보장하며 SVDD의 점증적 갱신 학습 능력으로 인하여 비정상 집단행동 데이터베이스의 변화에도 능동적으로 적응할 수 있다. 공개적으로 사용 가능한 벤치마크 데이터 셋인 PETS 2009와 UMN을 이용하여 본 논문에서 제안한 비정상 집단행동 탐지 시스템의 성능을 실험적으로 검증한다.

새로운 커널 기반 정상 상태 복구 기법과 응용 (New Kernel-Based Normality Recovery Method and Applications)

  • 강대성;박주영
    • 한국지능시스템학회논문지
    • /
    • 제16권4호
    • /
    • pp.410-415
    • /
    • 2006
  • SVDD(support vector data description)는 가장 주요한 one-class 서포트 벡터 학습 방법론 중 하나로 비정상 물체에서 정상 데이터를 구분하기 위해서 특정 공간에서 정의된 구를 이용하는 전략을 쓰는 방법론이다. 본 논문에서는 SVDD를 이용해서 노이즈가 섞인 비정상 데이터를 노이즈가 제거된 정상 데이터로 복원하는 방법에 대해서 논한다. 그리고 고해상 도의 학습 데이터를 이용하여 저해상도로 주어진 시험 데이터 이미지를 고해상도의 이미지로 복원하는 문제에 적용함으로써 본 논문의 방법론이 어떻게 실용적으로 적용될 수 있는지에 대해서 다룬다.