• Title/Summary/Keyword: SV2

Search Result 702, Processing Time 0.027 seconds

A Study on the Thyroid Dose High-Energy Radiation Therapy of Lung Cancer (폐암 고에너지 방사선치료 시 갑상선 피폭에 관한 연구)

  • Yang, Oh-Nam;Lim, Cheong-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.6
    • /
    • pp.297-302
    • /
    • 2015
  • High-energy medical linear accelerator on the dose to the thyroid cancer during radiotherapy were evaluated using optical stimulation luminescence dosimeters(OSLD) using. Scattered's influence in the case of 3D-CRT 25.4 mSv, 28.8 mSv, 31.3 mSv, 26.5 mSv, 27.4 mSv 5 times with an average 27.9 mSv, in the IMRT 46.8 mSv, 43.2 mSv, 42.3 mSv, 41.5 mSv, 44.1 mSv to five times the average of 43.6 was the result of mSv. In the case of light neutron dosimetry results 3D-CRT 3 mSv, 3 mSv, 3.4 mSv, 3.5 mSv, 3.1 mSv to five times the average 3.2 mSv, in the IMRT 5.1 mSv, 4.8 mSv, 4.2 mSv, 4.8 mSv, 4.9 mSv, to five times the average of 4.7 was the result of mSv. Both parties and the light scattered neutrons were significantly appreciated compared to IMRT 3D-CRT. Treatment of cancer using radiation workers, as in this study, and that a significant amount of scattered rays in the adjacent normal tissues during radiation therapy using energy assessment to influence by fully aware of this information is necessary for the exposure reduction efforts the feed.

A Study on the Difference of Scattered Rays with or Without Gonadal Shielding During Chest Computed Tomography (흉부 전산화 단층 촬영 검사 시 발생하는 생식선 차폐 유무에 따른 산란 선량 차이에 관한 연구)

  • Kwak, Jong Hyeok;Kim, Gyeong Rip;Sung, Hyun Chul;Kim, Seung Won;Song, Geun Sung;Choi, Min Gyeong;Lee, Sang Weon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.109-115
    • /
    • 2021
  • This study is a study on the difference in dose according to the presence or absence of gonadal shielding of scattered rays generated during chest computed tomography examination, and the scattered dose of the examination site was measured by placing the RadEye G-10 device in the center of the phantom. When the gonads are not shielded, the scattering lines of the whole, both sides, posterior and gonads are measured and Xenolite nolead Apron (0.35 mm PB), Xenolite nolead Apron (front 0.35 mm PB Mix back 0.25 mm PB, Skirt overlap), Half Apron After shielding with (0.5 mm PB), each scattered dose was measured. During chest computed tomography, the scattered dose of the test site was measured at 272 μSv, and when not shielded with Apron, the average total was 43 μSv, left 81 μSv, right part 82 μSv, posterior part 38.8 μSv, and Gonad part 16 μSv. Became. Xenolite nolead Apron shielded only the upper part and measured all 11.2 μSv, left part 43.1 μSv, right part 45.3 μSv, posterior part 12 μSv and Gonad part 5.2 μSv. Xenolite nolead Apron (Skirt overlap) covered the Pelvis area 360° and the dose was measured to be 5.6 μSv in the whole, 22.4 μSv in the left, 15.7 μSv in the right side, 6 μSv in the posterior part, and 3.2 μSv in the Gonad part. Xenolite nolead Apron (Skirt overlap) covered the Pelvis area 360° and the dose was measured to be 5.6 μSv in the whole, 22.4 μSv in the left, 15.7 μSv in the right side, 6 μSv in the posterior part, and 3.2 μSv in the Gonad part. When measuring only the upper part with Half Apron, the total measurement was 10.7 μSv, the left part 42.6 μSv, the right part 40.6 μSv, the posterior part 11.3 μSv, and the Gonad part 4.7 μSv. The method of 360° shielding of the pelvic area showed a dose reduction of more than 80%, and a dose reduction effect of more than 70% was shown when all shielding was performed. In all computerized tomography examinations, research to reduce the exposure dose and various shielding devices were used. It is believed that continuous research on the technique is needed.

A Review of Personal Radiation Dose per Radiological Technologists Working at General Hospitals (전국 종합병원 방사선사의 개인피폭선량에 대한 고찰)

  • Jung, Hong-Ryang;Lim, Cheong-Hwan;Lee, Man-Koo
    • Journal of radiological science and technology
    • /
    • v.28 no.2
    • /
    • pp.137-144
    • /
    • 2005
  • To find the personal radiation dose of radiological technologists, a survey was conducted to 623 radiological technologists who had been working at 44 general hospitals in Korea's 16 cities and provinces from 1998 to 2002. A total of 2,624 cases about personal radiological dose that were collected were analyzed by region, year and hospital, the results of which look as follows : 1. The average radiation dose per capita by region and year for the 5 years was 1.61 mSv. By region, Daegu showed the highest amount 4.74 mSv, followed by Gangwon 4.65 mSv and Gyeonggi 2.15 mSv. The lowest amount was recorded in Chungbuk 0.91 mSv, Jeju 0.94 mSv and Busan 0.97 mSv in order. By year, 2000 appeared to be the year showing the highest amount of radiation dose 1.80 mSv, followed by 2002 1.77 mSv, 1999 1.55 mSv, 2001 1.50 mSv and 1998 1.36 mSv. 2. In 1998, Gangwon featured the highest amount of radiological dose per capita 3.28 mSv, followed by Gwangju 2.51 mSv and Daejeon 2.25 mSv, while Jeju 0.86mSv and Chungbuk 0.85 mSv belonged to the area where the radiation dose remained less than 1.0 mSv In 1999, Gangwon also topped the list with 5.67 mSv, followed by Daegu with 4.35 mSv and Gyeonggi with 2.48 mSv. In the same year, the radiation dose was kept below 1.0 mSv. in Ulsan 0.98 mSv, Gyeongbuk 0.95 mSv and Jeju 0.91 mSv. 3. In 2000, Gangwon was again at the top of the list with 5.73 mSv. Ulsan turned out to have less than 1.0 mSv of radiation dose in the years 1998 and 1999 consecutively, whereas the amount increased relatively high to 5.20 mSv. Chungbuk remained below the level of 1.0 mSv with 0.79 mSv. 4. In 2001, Daegu recorded the highest amount of radiation dose among those ever analyzed for 5 years with 9.05 mSv, followed by Gangwon with 4.01 mSv. The area with less than 1.0 mSv included Gyeongbuk 0.99 mSv and Jeonbuk 0.92 mSv. In 2002, Gangwon also led the list with 4.65 mSv while Incheon 0.88 mSv, Jeonbuk 0.96 mSv and Jeju 0.68 mSv belonged to the regions with less than 1.0 mSv of radiation dose. 5. By hospital, KMH in Daegu showed the record high amount of average radiation dose during the period of 5 years 6.82 mSv, followed by GAH 5.88 mSv in Gangwon and CAH 3.66 mSv in Seoul. YSH in Jeonnam 0.36 mSv comes first in the order of the hospitals with least amount of radiation dose, followed by GNH in Gyeongnam 0.39 mSv and DKH in Chungnam 0.51 mSv. There is a limit to the present study in that a focus is laid on the radiological technologists who are working at the 3rd referral hospitals which are regarded to be stable in terms of working conditions while radiological technologists who are working at small-sized hospitals are excluded from the survey. Besides, there are also cases in which hospitals with less than 5 years since establishment are included in the survey and the radiological technologists who have worked for less than 5 years at a hospital are also put to survey. We can't exclude the possibility, either, of assumption that the difference of personal average radiological dose by region, hospital and year might be ascribed to the different working conditions and facilities by medical institutions. It seems therefore desirable to develop standardized instruments to measure working environment objectively and to invent device to compare and analyze them by region and hospital more accurately in the future.

  • PDF

A Study on the Individual Radiation Exposure of Medical Facility Nuclear Workers by Job (의료기관 핵의학 종사자의 직무 별 개인피폭선량에 관한 연구)

  • Kang, Chun-Goo;Oh, Ki-Baek;Park, Hoon-Hee;Oh, Shin-Hyun;Park, Min-Soo;Kim, Jung-Yul;Lee, Jin-Kyu;Na, Soo-Kyung;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.9-16
    • /
    • 2010
  • Purpose: With increasing medical use of radiation and radioactive isotopes, there is a need to better manage the risk of radiation exposure. This study aims to grasp and analyze the individual radiation exposure situations of radiation-related workers in a medical facility by specific job, in order to instill awareness of radiation danger and to assist in safety and radiation exposure management for such workers. Materials and Methods: 1 January 2007 to 31 December 2009 to work in medical institutions are classified as radiation workers Nuclear personal radiation dosimeter regularly, continuously administered survey of 40 workers in three years of occupation to target, Imaging Unit beautifully, age, dose sector, job function-related tasks to identify the average annual dose for a deep dose, respectively, were analyzed. The frequency analysis and ANOVA analysis was performed. Results: Imaging Unit beautifully three years the annual dose PET and PET/CT in the work room 11.06~12.62 mSv dose showed the highest, gamma camera injection room 11.72 mSv with a higher average annual dose of occupation by the clinical technicians 8.92 mSv the highest, radiological 7.50 mSv, a nurse 2.61 mSv, the researchers 0.69 mSv, received 0.48 mSv, 0.35 mSv doctors orderly, and detail work employed the average annual dose of the PET and PET/CT work is 12.09 mSv showed the highest radiation dose, gamma camera injection work the 11.72 mSv, gamma camera imaging work 4.92 mSv, treatment and safety management and 2.98 mSv, a nurse working 2.96 mSv, management of 1.72 mSv, work image analysis 0.92 mSv, reading task 0.54 mSv, with receiving 0.51 mSv, 0.29 mSv research work, respectively. Dose sector average annual dose of the study subjects, 15 people (37.5%) than the 1 mSv dose distribution and 5 people (12.5%) and 1.01~5.0 mSv with the dose distribution was less than, 5.01~10.0 mSv in the 14 people (35.0%), 10.01~20.0 mSv in the 6 people (15.0%) of the distribution were analyzed. The average annual dose according to age in occupations that radiological workers 25~34 years old have the highest average of 8.69 mSv dose showed the average annual dose of tenure of 5~9 years in jobs radiation workers in the 9.5 mSv The average was the highest dose. Conclusion: These results suggest that medical radiation workers working in Nuclear Medicine radiation safety management of the majority of the current were carried out in the effectiveness, depending on job characteristics has been found that many differences. However, this requires efforts to minimize radiation exposure, and systematic training for them and for reasonable radiation exposure management system is needed.

  • PDF

Absorbed Dose and Effective Dose for Lung Cancer Image Guided Radiation Therapy(IGRT) using CBCT and 4D-CBCT (폐암 영상유도방사선 치료 시 CBCT와 4D-CBCT를 이용한 흡수선량 및 유효선량에 관한 선량 평가)

  • Kim, Dae yong;Lee, Woo Suk;Koo, Ki Lae;Kim, Joo Seob;Lee, Sang Hyeon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.1
    • /
    • pp.57-64
    • /
    • 2016
  • Purpose : To evaluate the results of absorbed and effective doses using CBCT and 4D-CBCT settings for lung cancer. Materials and Methods : This experimental study. Measurements were performed using a Anderson rando phantom with OSLD(optically stimulated luminescent dosimeters). It was performed computed tomography(Lightspeed GE, USA) in order to express the major organs of the human body. Measurements were obtained a mean value is repeated three times each. Evaluations of effective dose and absorbed dose were performed the CL-IX-Thorax mode and Truebeam-Thorax mode CBCT. Additionally, compared Truebeam-Thorax mode CBCT with Truebeam-Thorax mode 4D-CBCT(Four-dimensional Cone Beam Computed Tomography) Results : Average absorbed dose in the CBCT of CL-IX was measured in lung 2.505cGy, heart 2.595cGy, liver 2.145cGy, stomach 1.934cGy, skin 2.233cGy, in case of Truebeam, It was measured lung 1.725cGy, heart 2.034cGy, liver 1.616cGy, stomach 1.470cGy, skin 1.445cGy. In case of 4D-CBCT, It was measured lung 3.849cGy, heart 4.578cGy, liver 3.497cGy, stomach 3.179cGy, skin 3.319cGy Average effective dose, considered tissue weighting and radiation weighting, in the CBCT of CL-IX was measured lung 2.164mSv, heart 2.241mSVv, liver 0.136mSv, stomach 1.668mSv, skin 0.009mSv, in case of Turebeam, it was measured lung 1.725mSv, heart 1.757mSv, liver 0.102mSv, stomach 1.270mSv, skin 0.005mSv, In case of 4D-CBCT, It was measured lung 3.326mSv, heart 3.952mSv, liver 0.223mSv, stomach 2.747mSv, skin 0.013mSv Conclusion : As a result, absorbed dose and effective Dose in the CL-IX than Truebeam was higher about 1.3 times and in the 4D-CBCT Truebeam than CBCT of Truebeam was higher about 2.2times However, a large movement of the patient and respiratory gated radiotherapy may be more accurate treatment in 4D-CBCT. Therefore, it will be appropriate to selectively used.

  • PDF

Analysis of Patient Effective Dose in PET/CT; Using CT Dosimetry Programs (CT 선량 측정 프로그램을 이용한 PET/CT 검사 환자의 예측 유효 선량의 분석)

  • Kim, Jung-Sun;Jung, Woo-Young;Park, Seung-Yong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.77-82
    • /
    • 2010
  • Purpose: As PET/CT come into wide use, it caused increasing of expose in clinical use. Therefore, Korea Food and Drug Administration issued Patient DRL (Diagnostic Reference Level) in CT scan. In this study, to build the basis of patient dose reduction, we analyzed effective dose in transmission scan with CT scan. Materials and Methods: From February, 2010 to March 180 patients (age: $55{\pm}16$, weight: $61.0{\pm}10.4$ kg) who examined $^{18}F$-FDG PET/CT in Asan Medical Center. Biograph Truepoint 40 (SIEMENS, GERMANY), Biograph Sensation 16 (SIEMENS, GERMANY) and Discovery STe8 (GE healthcare, USA) were used in this study. Per each male and female average of 30 patients doses were analyzed by one. Automatic exposure control system for controlling the dose can affect the largest by a patient's body weight less than 50 kg, 50-60 kg less, 60 kg more than the average of the three groups were divided doses. We compared that measured value of CT-expo v1.7 and ImPACT v1.0. The relationship between body weight and the effective dose were analyzed. Results: When using CT-Expo V1.7, effective dose with BIO40, BIO16 and DSTe8 respectably were $6.46{\pm}1.18$ mSv, $9.36{\pm}1.96 $mSv and $9.36{\pm}1.96$ mSv for 30 male patients respectably $6.29{\pm}0.97$ mSv, $10.02{\pm}2.42$ mSv and $9.05{\pm}2.27$ mSv for 30 female patients respectably. When using ImPACT v1.0, effective dose with BIO40, BIO16 and DSTe8 respectably were $6.54{\pm}1.21$ mSv, $8.36{\pm}1.69$ mSv and $9.74{\pm}2.55$Sv for 30 male patients respectably $5.87{\pm}1.09$ mSv, $8.43{\pm}1.89$ mSv and $9.19{\pm}2.29$ mSv for female patients respectably. When divided three groups which were under 50 kg, 50~60 kg and over 60 kg respectably were 6.27 mSv, 7.67 mSv and 9.33 mSv respectably using CT-Expo V1.7, 5.62 mSv, 7.22 mSv and 8.91 mSv respectably using ImPACT v1.0. Weight and the effective dose coefficient analysis showed a very strong positive correlation(r=743, r=0.693). Conclusion: Using such a dose evaluation programs, easier to predict and evaluate the effective dose possible without performing phantom study and such dose evaluation programs could be used to collect basic data for CT dose management.

  • PDF

Effect of the Space Dose Rate due to Change of X-ray Irradiation Energy and MU Value in Radiation Therapy Room (선형가속기의 엑스선 조사에너지와 MU값의 변화가 치료실 내 공간선량률 변화에 미치는 영향)

  • Kwon, Hyeonghyo;Park, Geonryul;Kim, Minji;Jo, Yeongdan;Kim, Youngjae
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.2
    • /
    • pp.77-83
    • /
    • 2020
  • This study investigated the radiation protection of therapeutic radiologists. Based on the change in X-ray energy and MU value, the space dose rate in the treatment room after the irradiation was measured. 6MV, 10MV and 15MV photon beams were exposed to radiation inside the treatment room based on 300MU, 600MU and 1000MU using a linear accelerator. And repeated 10 times under the same conditions. As a result of the experiment, 0.1555 μSv/h for 6MV 300MU, 0.157 μSv /h for 300sec, 0.152 μSv/h, 0.156 μSv/h for 600MU, and 0.157 μSv/h 0.152 μSv/h for 1000MU. 300MU of 10MV was 0.49 μSv/h, 0.309 μSv/h, and 0.69 μSv/h, 0.416 μSv/h for 600MU, respectively, and 1000MU was 0.977 μSv/h and 0.478 μSv/h, respectively. The 300MU of 15MV was 3.02 μSv/h, 1.2 μSv/h, 5.459 μSv/h at 600MU, 7.34 μSv/h at 1.836 μSv/h 1000MU, and 2.709 μSv/h. The average spatial dose rate of 6MV was not significantly different from the natural spatial dose rate in the treatment room. High spatial dose rates were measured at 10 MV and 15 MV and were attenuated over time. Therefore, entering the treatment room after a certain period of time (more than 60 seconds) is considered to be effective to prevent the exposure dose of radiation workers.

Radiation Dose during Fluoroscopy at the Organ from Extracorporeal Shock Wave Lithotripsy (체외충격파쇄석술에서 투시 시 주요 장기별 방사선 피폭선량)

  • Moon, Sung-Ho;Jung, Hong-Ryang;Lim, Cheong-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.5
    • /
    • pp.343-350
    • /
    • 2010
  • We measured the radiation exposure for 55 persons (male: 36, female: 19) who was diagnosed with kidney and ureter stones and received ESWL. The absorbed dose was measured at the organ which is expected to absorb relatively much radiation (kidney, bladder, liver). The radiation dose measurement voltage 80kVp, current of 5mA as a fixed model of the human body by using the Rando phantom with Radiophotoluminescent Glass Dosimeter. Absorbed dose was measured for two times (5 minute and 10 minute, each) and converted to effective dose. Mean number of treatment was 1.8 times (1~4) per patient was the mean time of radiation exposure533 seconds (248-2516). For the treatment of right renal stone, the effective dose of right kidney, left kidney, liver and bladder was 2.458mSv, 0.152mSv, 1.404 mSv and 0.019mSv, respectively. For the treatment of left renal stone, the effective dose of right kidney, left kidney, liver and bladder was 2.496mSv, 0.252mSv, 0.178 mSv, and 0.017mSv, respectively. For the treatment of distal ureter stone, the effective dose of right kidney, left kidney and bladder was 0.009mSv, 0.01mSv and 3.742mSv, respectively.

Experimental investigation of the photoneutron production out of the high-energy photon fields at linear accelerator (고에너지 방사선치료 시 치료변수에 따른 광중성자 선량 변화 연구)

  • Kim, Yeon Su;Yoon, In Ha;Bae, Sun Myeong;Kang, Tae Young;Baek, Geum Mun;Kim, Sung Hwan;Nam, Uk Won;Lee, Jae Jin;Park, Yeong Sik
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.257-264
    • /
    • 2014
  • Purpose : Photoneutron dose in high-energy photon radiotherapy at linear accelerator increase the risk for secondary cancer. The purpose of this investigation is to evaluate the dose variation of photoneutron with different treatment method, flattening filter, dose rate and gantry angle in radiation therapy with high-energy photon beam ($E{\geq}8MeV$). Materials and Methods : TrueBeam $ST{\time}TM$(Ver1.5, Varian, USA) and Korea Tissue Equivalent Proportional Counter (KTEPC) were used to detect the photoneutron dose out of the high-energy photon field. Complex Patient plans using Eclipse planning system (Version 10.0, Varian, USA) was used to experiment with different treatment technique(IMRT, VMAT), condition of flattening filter and three different dose rate. Scattered photoneutron dose was measured at eight different gantry angles with open field (Field size : $5{\time}5cm$). Results : The mean values of the detected photoneutron dose from IMRT and VMAT were $449.7{\mu}Sv$, $2940.7{\mu}Sv$. The mean values of the detected photoneutron dose with Flattening Filter(FF) and Flattening Filter Free(FFF) were measured as $2940.7{\mu}Sv$, $232.0{\mu}Sv$. The mean values of the photoneutron dose for each test plan (case 1, case 2 and case 3) with FFF at the three different dose rate (400, 1200, 2400 MU/min) were $3242.5{\mu}Sv$, $3189.4{\mu}Sv$, $3191.2{\mu}Sv$ with case 1, $3493.2{\mu}Sv$, $3482.6{\mu}Sv$, $3477.2{\mu}Sv$ with case 2 and $4592.2{\mu}Sv$, $4580.0{\mu}Sv$, $4542.3{\mu}Sv$ with case 3, respectively. The mean values of the photoneutron dose at eight different gantry angles ($0^{\circ}$, $45^{\circ}$, $90^{\circ}$, $135^{\circ}$, $180^{\circ}$, $225^{\circ}$, $270^{\circ}$, $315^{\circ}$) were measured as $3.2{\mu}Sv$, $4.3{\mu}Sv$, $5.3{\mu}Sv$, $11.3{\mu}Sv$, $14.7{\mu}Sv$, $11.2{\mu}Sv$, $3.7{\mu}Sv$, $3.0{\mu}Sv$ at 10MV and as $373.7{\mu}Sv$, $369.6{\mu}Sv$, $384.4{\mu}Sv$, $423.6{\mu}Sv$, $447.1{\mu}Sv$, $448.0{\mu}Sv$, $384.5{\mu}Sv$, $377.3{\mu}Sv$ at 15MV. Conclusion : As a result, it is possible to reduce photoneutron dose using FFF mode and VMAT method with TrueBeam $ST{\time}TM$. The risk for secondary cancer of the patients will be decreased with continuous evaluation of the photoneutron dose.

A Study of Decrease Exposure Dose for the Radiotechnologist in PET/CT (PET-CT 검사에서 방사선 종사자 피폭선량 저감에 대한 방안 연구)

  • Kim, Bit-Na;Cho, Suk Won;Lee, Juyoung;Lyu, Kwang Yeul;Park, Hoon-Hee
    • Journal of radiological science and technology
    • /
    • v.38 no.1
    • /
    • pp.23-30
    • /
    • 2015
  • Positron emission tomography scan has been growing diagnostic equipment in the development of medical imaging system. Compare to 99mTc emitting 140 keV, Positron emission radionuclide emits 511 keV gamma rays. Because of this high energy, it needs to reduce radioactive emitting from patients for radio technologist. We searched the external dose rates by changing distance from patients and measure the external dose rates when we used shielder investigate change external dose rates. In this study, the external dose distribution were analyzed in order to help managing radiation protection of radio technologists. Ten patients were searched (mean age: $47.7{\pm}6.6$, mean height: $165.5{\pm}3.8cm$, mean weight: $65.9{\pm}1.4kg$). Radiation was measured on the location of head, chest, abdomen, knees and toes at the distance of 10, 50, 100, 150, and 200 cm, respectively. Then, all the procedure was given with a portable radiation shielding on the location of head, chest, and abdomen at the distance of 100, 150, and 200 cm and transmittance was calculated. In 10 cm, head ($105.40{\mu}Sv/h$) was the highest and foot($15.85{\mu}Sv/h$) was the lowest. In 200 cm, head, chest, and abdomen showed similar. On head, the measured dose rates were $9.56{\mu}Sv/h$, $5.23{\mu}Sv/h$, and $3.40{\mu}Sv/h$ in 100, 150, and 200 cm, respectively. When using shielder, it shows $2.24{\mu}Sv/h$, $1.67{\mu}Sv/h$, and $1.27{\mu}Sv/h$ in 100, 150, and 200 cm on head. On chest, the measured dose rates were $8.54{\mu}Sv/h$, $4.90{\mu}Sv/h$, $3.44{\mu}Sv/h$ in 100, 150, and 200 cm, respectively. When using shielder, it shows $2.27{\mu}Sv/h$, $1.34{\mu}Sv/h$, and $1.13{\mu}Sv/h$ in 100, 150, and 200 cm on chest. On abdomen, the measured dose rates were $9.83{\mu}Sv/h$, $5.15{\mu}Sv/h$, and $3.18{\mu}Sv/h$ in 100, 150, and 200 cm, respectively. When using shielder, it shows $2.60{\mu}Sv/h$, $1.75{\mu}Sv/h$, and $1.23{\mu}Sv/h$ in 100, 150, and 200 cm on abdomen. Transmittance was increased as the distance was expanded. As the distance was further, the radiation dose were reduced. When using shielder, the dose were reduced as one-forth of without shielder. The Radio technologists are exposed of radioactivity and there were limitations on reducing the distance with Therefore, the proper shielding will be able to decrease radiation dose to the technologists.