• Title/Summary/Keyword: SUZ-4

Search Result 5, Processing Time 0.022 seconds

Effect of Synthesis Conditions on Physicochemical Properties of Zeolite SUZ-4 (합성조건이 제올라이트 SUZ-4의 물성에 미치는 영향)

  • Kim, Deok-Kyu;Kim, Young-Ho;Hwang, Young-Kyu;Chang, Jong-San;Park, Sang-Eon
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.6
    • /
    • pp.623-628
    • /
    • 2004
  • Zeolite SUZ-4 was successfully synthesized with TEAOH (Tetraethyl ammonium hydroxide) as structure directing agent under a vigorous stirring condition. Well-defined zeolite SUZ-4 structure was only obtained under stirring of 250 rpm or more. The results imply that stirring plays a pivotal role for reproducible synthesis. Morphology of SUZ-4 crystal was controlled by adjustment of water concentrations. The physicochemical characterization of SUZ-4 and its hydrothermal stability using a steam treatment were investigated by using XRD, BET, and $NH_3-TPD$.

Classification of Forest Vegetation of Seonunsan Area, Southweatern Korea (Z-M 방식에 의한 선운산지역의 삼림군집 분류)

  • Kim, Jeong-Un;Yang-Jai Yim
    • The Korean Journal of Ecology
    • /
    • v.9 no.4
    • /
    • pp.209-223
    • /
    • 1986
  • The forest stands of Seonusan area, South-western Korea, were classified into three alliances and nine communities by the Z-M school scheme. Of these one alliance and four association were recognized in this study, that is, an alliance, Carpinion laxiflorae and four associations, Casrpinetum tschonoskii, Quercetum variabilis, Carpinetum laxiflorae and Rhododendro mucronulati-Pinetum densiflorae. Hierachy of Seonunsan area forest vegetation by Z-M scheme was as fallows: Pinion densiflorae Suz.-Tok. 1966. 1. Rhododendro mucronlati-Pinetum densiflorae ass.l nov., 2. Pinus thunbergii community. Carpinion laxiflorae all. nov., 1. Quercus serrata-Carpinus tschonoskii community, 2. Quercus aliena-Carpinus tschonoskii community, 3, Carp inetum tschonoskii ass. nov., a. Typical subass., b. Sasa borealis subass. 4. Quercetum variabilis ass. nov., a Sasa borealis subass. b. Typical subass, 5. Carpinetum laxiflorae ass. nov., Zelkovion serratae Miyawaki et al., 1977., 1. Orixo-Zelk ovetum serratae Miyawaki et H. Tohma 1975., a Typical subass., b. Thea sinensis facies, 2. Thea sinensis-Camellia japonica community.

  • PDF

Epigenetic Regulation by Modification of Histone Methylation in Embryonic Stem Cells (히스톤 메틸화 변형을 통한 배아줄기세포의 후성 유전학적 조절)

  • Ha, Yang-Hwa;Kim, Young-Eun;Park, Jeong-A;Park, Sang-Kyu;Lee, Young-Hee
    • Development and Reproduction
    • /
    • v.15 no.4
    • /
    • pp.273-279
    • /
    • 2011
  • Epigenetic regulation is a phenomenon that changes the gene function without changing the underlying DNA sequences. Epigenetic status of chromosome is regulated by mechanisms such as histone modification, DNA modification, and RNAi silencing. In this review, we focused on histone methylation for epigenetic regulation in ES cells. Two antagonizing multiprotein complexes regulate methylation of histones to guide expression of genes in ES cells. The Polycomb repressive complex 2 (PRC2), including EED, EZH2, and SUZ12 as core factors, contributes to gene repression by increasing trimethylation of H3K27 (H3K27me3). In contrast, the Trithorax group (TrxG) complex including MLL is related to gene activation by making H3K4me3. PRC2 and TrxG accompany a variety of accessory proteins. Most prominent feature of epigenetic regulation in ES cells is a bivalent state in which H3K27me3 and H3K4me3 appear simultaneously. Concerted regulation of PRC2, TrxG complex, and H3K4- or H3K27-specific demethylases activate expression of pluripotency-related genes and suppress development-related genes in ES cells. Modified balance of the regulators also enables ES cells to efficiently differentiate to a variety of cells upon differentiating signals. More detailed insights on the epigenetic regulators and their action will lead us to better understanding and use of ES cells for future application.

Plant Sociological Studies on the Pinus densiflora Forest in Korea (한국산 소나무림의 식물사회학적연구)

  • Lee, Woo-Tchul;Lee, Cheol-Hwan
    • The Korean Journal of Ecology
    • /
    • v.12 no.4
    • /
    • pp.257-284
    • /
    • 1989
  • This study was carried out to characterize pinus densiflora forests in middle province (Mt. Seolag, Mt. Taebaik) south province (Mt. Sokli, Mt. Jiri) and south-coast province (Mt. Daedun) of Korea. The appearance species in the P. densiflora alliance included 325 taxa and varied according to the direction of slopes. The steeper the slope was, the fewer number of taxa were observed. The floristic composition of south-coast province was gradually changing to the south hemispheric factors. Dominant species groups of P. densiflora alliance were classified into P. densiflora, Quercus serrata ( layer), Rhus trichocarpa ( layer), Lespedeza maximowiczii var. tomentella (S layer), Artemisia keiskeana, Carex humilis var. nana, Spodiopogon sibiricus (K layer). Quercus variabilis, Fraxinus sieboldiana and Styrax japonica association were formed under the P. densiflora alliance. Quercus, Rhus, Lespedeza and Rhododendron groups maintained high ecological relationships one another. The soil factors (pH, organic matters, and water field capacity)and relative light intensity tended to show negative correlation, which were significantly different among provinces. The P. densiflora forests of Korea were classified into one alliance and four associations, that is, pinion densiflorae Suz.-Tok. 1966, Quercetum variabilae ass. nov., Quercetum mongolicae ass. nov. Fraxinetum sieboldianae ass. nov. and Styraxetum japonicae ass. nov.

  • PDF

Recent Advancement in the Stem Cell Biology (Stem Cell Biology, 최근의 진보)

  • Harn, Chang-Yawl
    • Journal of Plant Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.195-207
    • /
    • 2006
  • Stem cells are the primordial, initial cells which usually divide asymmetrically giving rise to on the one hand self-renewals and on the other hand progenitor cells with potential for differentiation. Zygote (fertilized egg), with totipotency, deserves the top-ranking stem cell - he totipotent stem cell (TSC). Both the ICM (inner cell mass) taken from the 6 days-old human blastocyst and ESC (embryonic stem cell) derived from the in vitro cultured ICM have slightly less potency for differentiation than the zygote, and are termed pluripotent stem cells. Stem cells in the tissues and organs of fetus, infant, and adult have highly reduced potency and committed to produce only progenitor cells for particular tissues. These tissue-specific stem cells are called multipotent stem cells. These tissue-specific/committed multipotent stem cells, when placed in altered environment other than their original niche, can yield cells characteristic of the altered environment. These findings are certainly of potential interest from the clinical, therapeutic perspective. The controversial terminology 'somatic stem cell plasticity' coined by the stem cell community seems to have been proved true. Followings are some of the recent knowledges related to the stem cell. Just as the tissues of our body have their own multipotent stem cells, cancerous tumor has undifferentiated cells known as cancer stem cell (CSC). Each time CSC cleaves, it makes two daughter cells with different fate. One is endowed with immortality, the remarkable ability to divide indefinitely, while the other progeny cell divides occasionally but lives forever. In the cancer tumor, CSC is minority being as few as 3-5% of the tumor mass but it is the culprit behind the tumor-malignancy, metastasis, and recurrence of cancer. CSC is like a master print. As long as the original exists, copies can be made and the disease can persist. If the CSC is destroyed, cancer tumor can't grow. In the decades-long cancer therapy, efforts were focused on the reducing of the bulk of cancerous growth. How cancer therapy is changing to destroy the origin of tumor, the CSC. The next generation of treatments should be to recognize and target the root cause of cancerous growth, the CSC, rather than the reducing of the bulk of tumor, Now the strategy is to find a way to identify and isolate the stem cells. The surfaces of normal as well as the cancer stem cells are studded with proteins. In leukaemia stem cell, for example, protein CD 34 is identified. In the new treatment of cancer disease it is needed to look for protein unique to the CSC. Blocking the stem cell's source of nutrients might be another effective strategy. The mystery of sternness of stem cells has begun to be deciphered. ESC can replicate indefinitely and yet retains the potential to turn into any kind of differentiated cells. Polycomb group protein such as Suz 12 repress most of the regulatory genes which, activated, are turned to be developmental genes. These protein molecules keep the ESC in an undifferentiated state. Many of the regulator genes silenced by polycomb proteins are also occupied by such ESC transcription factors as Oct 4, Sox 2, and Nanog. Both polycomb and transcription factor proteins seem to cooperate to keep the ESC in an undifferentiated state, pluripotent, and self-renewable. A normal prion protein (PrP) is found throughout the body from blood to the brain. Prion diseases such as mad cow disease (bovine spongiform encephalopathy) are caused when a normal prion protein misfolds to give rise to PrP$^{SC}$ and assault brain tissue. Why has human body kept such a deadly and enigmatic protein? Although our body has preserved the prion protein, prion diseases are of rare occurrence. Deadly prion diseases have been intensively studied, but normal prion problems are not. Very few facts on the benefit of prion proteins have been known so far. It was found that PrP was hugely expressed on the stem cell surface of bone marrow and on the cells of neural progenitor, PrP seems to have some function in cell maturation and facilitate the division of stem cells and their self-renewal. PrP also might help guide the decision of neural progenitor cell to become a neuron.