• Title/Summary/Keyword: SURFACE SOIL CONSERVATION

Search Result 137, Processing Time 0.032 seconds

Nondestructive Deterioration Diagnosis for the Former Ore Dressing Plant in the Yongwha Mine of Registered Cultural Property No. 255 (등록문화재 제255호 영양 구 용화광산 선광장의 비파괴 훼손도 진단)

  • Chun, Yu Gun;Lee, Chan Hee
    • Journal of Conservation Science
    • /
    • v.28 no.3
    • /
    • pp.235-245
    • /
    • 2012
  • Nondestructive deterioration diagnosis has been carried out for the former ore dressing plant of the Yongwha mine in Yeongyang (Registered Cultural Property No. 255). Deterioration rates about organic contaminant and soil of the upper part (7 to 13 layer) indicate higher than the lower part (1 to 6 layer) of the ore dressing plants. By contrast, deterioration rates such as crack, break out and discoloration of the lower part indicate very higher than the upper part. It is estimated that the plants of the lower part that mechanical and chemical process had been done for flotation were damaged severely by physicochemical weathering with reaction of concrete and chemical solution. As results of ultrasonic velocity measurement, average p-wave velocity of plants were measured 2,462m/s (compressive strength $529kgf/cm^2$). As for the analytical results of surface contaminants and soil compositions using P-XRF, they were identical with major elements (Cu, Zn, Pb, Fe and As) of ore minerals from the Yongwha mine. Therefore, the ore dressing plant should be treated by phytoremediation with conservation because heavy metals could impinged upon plants and natural environment.

A study for conservation of plant-based cultural properties : on the subject of straw sandals excavated at Goongnamji in Buyeo (초본류 문화재의 보존처리를 위한 연구 -부여 궁남지 출토 짚신을 대상으로-)

  • Na, Mi-Sun;Kim, Ik-Joo;Kim, Soo-Ki
    • 한국문화재보존과학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.115-130
    • /
    • 2004
  • Plant-based cultural assets using straw and grass as household goods of our people's have been used as indispensable tools for practical living for a very long time. However, only a limited number of artifacts were unearthed so far due to tile fragility of the material. For this reason, research on plant-based cultural properties had close to no progress, and the appropriateness of the PEG method, high-grade alcohol method, alcohol--ether-resin method, and Paraloid B-72 used in preserving plant-based cultural properties has not been sufficiently investigated. Therefore, this study examined the weight change rate by applying the methods of Primal MC-76 and vacuum freeze-drying used mostly as a earth-layer hardening material among PEG and acrylic resin, which are applied widely for preservation of waterlogged archaeological wood, as a means to preserve plant-based cultural properties along with the examination of the subject material, and an experiment was also performed on moisture absorption. The findings as a result were, first, the plant-based material being studied was found to be Typha (Typha orientalis Presl). Secondly, the weight change experiment applying $PEG\#400$ and $PEG\#4000$ confirmed a steady increase of weight if PEG -2Step is used for treatment. Third, in preserving all subject materials with soil, treatment with $PEG\#4000$, Primal MC-76, and vacuum freeze-drying showed that tile vacuum freeze-drying method resulted in the largest or $20\%$ reduction in weight, while Primal MC-76 resulted in $18\%$ and $PEG\#4000$ in $8\%$ of weight reduction. It was concluded that, considering the stability of soil measurement, this came to be because resin permeation was carried out along with tile drying process. Fourth, the weight changes were found to be around $10\%$ in various humidity conditions after the preservation treatment. The greatest weight change rate was seen in the case of $PEG\#4000$, particularly having chemicals gush out in a high humidity (RH $84\%$ or higher) environment. In the case of Primal MC-76 and vacuum freeze-drying methods, $6\~8\%$ weight changes were detected, and the lowest weight change was found in the case of the vacuum freeze-drying method. Fifth, as for color changes after treatment, blackening occurred most strongly with $PEG\#4000$, while Primal MC-76 and vacuum freeze-drying manifested colors closest to dry straw or grass. However, the texture of straw was not very evident in the case of Primal MC-76, due to a glossy surface, but vacuum freeze-drying was found to offer tile best result in terms of texture. Putting together the results of the above experiments, vacuum freeze-drying presented after being treated with PEG2-Step the most stabilized changes in weight, while it offered the smallest change in color as well.

  • PDF

Soil Erosion From Slope Land at Early Stage of Grasses for Development of Mountainous Area (산지개발을 위한 경사도별 초지조성초기의 토양유실량측정시험)

  • Hwang, Eun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.1
    • /
    • pp.71-81
    • /
    • 1989
  • Soil erosion was investigated to find out difference in amount of soil eroded from slope land at early stage of young grasses and at later stage with sufficient cover with different slopes. The six experimental plots were formed on 8$^{\circ}$, 10$^{\circ}$, 15$^{\circ}$, 20$^{\circ}$, and 25$^{\circ}$, with 2m width and 20m length located at the Hwak Kok Ri, Chun Sung Gun, Kang Weon Do. The amount of soil eroded and run-off were collected from 1. May 1987. to 30. October 1988, growing with grasses sowed 2. September 1987. The results were as follows : 1. The amount of soil eroded from the plots except 8$^{\circ}$ plot exceeded the allowable soil erosion with 14 ton/ha during the land formuing before establishment of sufficient surface cover with grasses. Therefore, proper soil conservation practice should be recommeneed. 2. The amount of soil eroded increased exponentially with increased slope as 1.24 times for 15$^{\circ}$1.65 times for 20*, and 2.94 times for 25$^{\circ}$, m comparing with standared 10$^{\circ}$ polt. 3. The erosion occurred mainly by high density of rainfall exceeding lOOmm as consecutive precipitation during the raining peried or accompanied by typhoon passing. 4. The significant soil erosion, when the land covering ratio was over 95% after seeding of grass, was recorded only by the single continuous storms over lOOmm of concentrated precpitation, of which amounts were 1/73~/250 of the allowable soil erosion. 5. The amount of soil erosion from the plots with sufficient surface cover with grasses increased as the slope increased however the amounts were small enough to be neglected. 6. Desolation by soil erosion would be minor problem up to the slope of 20$^{\circ}$ when the mountainous area developed to the grassland with sufficient cover. But it could be concerned on the turn to the hare land by the treading of livestocks with the land slope over 25$^{\circ}$. 7. The run-off of rainfall increased by the increament of slope but it was not exponentially increased. 8. The run-off of rainfall after seeding of grass reduced by 20% in comparison with the run-off of rainfall before seeding, which might be due to infiltration of rainfall promoted by the grass roots.

  • PDF

Comparison of Hourly and Daily SWAT Results for the Evaluation of Runoff Simulation Performance (SWAT모형의 시단위 및 일단위 유출 모의성능 비교)

  • Jang, Sun Sook;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.5
    • /
    • pp.59-69
    • /
    • 2016
  • This study aims to evaluate the Soil and Water Assessment Tool (SWAT) hourly hydrological modeling performance and compare it with daily SWAT modeling parameters. For the Byeolmicheon catchment ($1.17km^2$) located in the upstream of Gyeongancheon watershed and total 18 storm events measured during 3 years (2011-2013), the hourly SWAT was calibrated and validated using the Green and Ampt (G&A) infiltration equation. The determination coefficient ($R^2$) and Nash-Sutcliffe model efficiency (NSE) of hourly SWAT discharge were 0.81 and 0.73 respectively, and the most sensitive parameter was soil saturated hydraulic conductivity (SOL_K) and calibrated with the average value of 0.075 mm/hr. In addition, the hourly SWAT simulation by G&A was compared with the daily SWAT simulation by SCS-CN (Soil Conservation Service-Curve Number) method for the whole 3 years period. The houlrly G&A results showed $R^2$ and NSE of 0.71 and 0.50, and the daily SCS-CN results were 0.71 and 0.66, respectively. The SOL_K by daily SCS_CN method was calibrated at 75.5 mm/hr, 1,000 times greater than the hourly G&A method. The next sensitive parameters for the hourly simulation were lag time of lateral flow (LAT_TIME) and lag time of surface runoff (SURLAG).

A Reproduction Study on Finishing Layer of Double Bass, Maggini Giovanni Paolo (마찌니 조반니 파올로 더블베이스의 마감층 재현연구)

  • Lee, Chaehoon;Yoo, Seunghwan;Chung, Yongjae
    • Conservation Science in Museum
    • /
    • v.20
    • /
    • pp.93-106
    • /
    • 2018
  • The musical instruments displayed in Korean Museums consist of various materials such as wood, stone, metal, leather, and soil. As for instruments manufactured of organic materials, as time passed, they became damaged due to physical, chemical and biological effects. In order to restore these instruments, studies on the materials as well as the manufacturing techniques should be simultaneously conducted because of the characteristics of sound making instruments. In this study, 17th century Double bass were chosen as the model for the restoration study. The type of wood was identified and the finishing layer was analyzed. To investigate the finishing layer, the surface observation was conducted and the component analysis was also conducted by using both FT-IR and SEM-EDS. As a result, the species of wood were identified as the maple trees. In case of the finishing layer of it, the diluted Goma Lacca, a type of resin, with alcohol as the main solvent was covered for varnishing layer. These results were combined to determine the restoration of Double bass Maggini Giovanni Paolo varnishing layer and by this Violin was made.

Analysis of Early Revegetation Effect in Rock Slopes using Vegetation-Plant (식생플랜트를 이용한 암반비탈면의 조기녹화 효과분석)

  • Ma, Ho-Seop;Kang, Won-Seok;Park, Jin-Won
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.5
    • /
    • pp.81-89
    • /
    • 2010
  • This study was conducted to evaluate the effects of early revegetation by analyzing the characteristics of germination and growth of Chrysanthemum zawadskii using vegetation-plant in rock slopes. After making up a growing basis of approximately 20-cm depth and 10-cm diameter by using a boring machine, the surface of rock slopes was planted with vegetation-plant. The number of germinating populations by soil media was 41 in H.s, 4 in T.s, 3 in M.s, and 0 in M.g.s. The germination rate (%) by soil media was 20.0% in H.s, 3.3% in T.s, 2.5% in M.s and 0% in M.g.s. In monthly changes of growth rate, the aspect was northwest direction, the soil media was H.s, and the treatment was microorganism plot. The main factors affecting survivorship and growth of population were soil media and treatment plot. The interaction between each factor had a good effects in bearing x treatment plot, soil media x treatment plot. but, it is recommended that the mulching of vegetation plant is highly needed to help the germination of seed and growth of vegetation because of loss of seed and soil media occurred due to rainfall. Therefore, The result suggests that the revegetation technique using boring in rock slope was very efficient in respect of the early revegetation and the landscape.

Characteristics of the rocks and its weathering phenomena of the Gameunsa 3-story and Naweonri 5-story Pagodas located at the Kyeongju city, Korea (감은사지 3층 석탑(동탑)과 나원리 5층 석탑의 암석과 풍화현상의 특징에 대한 연구)

  • Lee, Sang Hun
    • Journal of Conservation Science
    • /
    • v.5 no.1 s.5
    • /
    • pp.20-40
    • /
    • 1996
  • For obtaining the basic data for establishing plan on the conservation of the Gameunsa 3-story and Naweonri 5-story Pagodas located at the Kyeongju city, the characteristics of the rock and weathering phenomena have been investigated. The former consists of quartz-rlch granite containing small amount of biotite, and the latter of alkali granite with abundant perthite, These rock phases are nearly identical to the marginal phase of medium-grained hornblende-biotite granodiorite and alkali granite respectively, which are distributed around the Kyeongju city. The rock weathering may be governed mainly by chemical weathering of feldspar following physical segregation of quartz grains and pervasive moss. The feldspar easily dissolve In the solution with pH<7 to precipitate clay mineral such as a kaolinite as a secondary phase on the feldspar surface. However, the chemical weathering of feldspar may continue when the surface is washed by the rain according to removal of the reprecipitated phase. On forwarding, the weathering may be greatly Influenced by the acid rain. Exfoliation and weathering along igneous lineation resulting in exfoliating along the structural line are the characteristic weathering phenomena. Also the secondary small cracks are irregularly developed on the rocks due to different strain on places by the overall structural unbalance of the pagodas. Along these cracks, the rain water intrudes deeply into the rocks and weathering occurs intensively compared to other parts. Weathering may be artificially promoted by the grinding or sculpturing when the pagodas were made. Because it may influence on the physical properties of the rocks as well as destruct the surface of the feldspar crystals, the major constituents of the rocks, it results in providing the environment of easy chemical weathering along time. For conservation, the pagodas must be structurally balanced by compacting the soil basement and supplementing rocks on the destroyed part. On the exfoliated part it is better not to be artifically treated as using cementing material. But the cracks may be filled up by cementing material to avoid the intrusion of acidic water. To supplement the rocks on the destroyed part, it may be better to use similar rock phases from identical biotite granite and alkali granite masses around the Kyeongju city.

  • PDF

LIDMOD3 Development for Design and Evaluation of Low Impact Development (저영향개발기법 설계 및 평가를 위한 LIDMOD3 개발)

  • Jeon, Ji-Hong;Seo, Seong-Cheol
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.4
    • /
    • pp.382-390
    • /
    • 2018
  • In this study, the LIDMOD3 was developed to design and evaluate low impact development (LIDMOD). In the same fashion, the LIDMOD3 employs a curve number (NRCS-CN) method to estimate the surface runoff, infiltration and event mean concentration as applicable to pollutant loads which are based on a daily time step. In these terms, the LIDMOD3 can consider a hydrologic soil group for each land use type LID-BMP, and the applied removal efficiency of the surface runoff and pollutant loads by virtue of the stored capacity, which was calculated by analyzing the recorded water balance. As a result of Model development, the LIDMOD3 is based on an Excel spread sheet and consists of 8 sheets of information data, including: General information, Annual precipitation, Land use, Drainage area, LID-BMPs, Cals-cap, Parameters, and the Results. In addition, the LIDMOD3 can estimate the annual hydrology and annual pollutant loads including surface runoff and infiltration, the LID efficiency of the estimated surface runoff for a design rainfall event, and an analysis of the peak flow and time to peak using a unit hydrolograph for pre-development, post-development without LID, and as calculated with LID. As a result of the model application as applied to an apartment, the LIDMOD3 can estimate LID-BMPs considering a well spatical distributed hydroloic soil group as realized on land use and with the LID-BMPs. Essentially, the LIDMOD3 is a screen level and simple model which is easy to use because it is an Excel based model, as are most parameters in the database. This system can be expected to be widely used at the LID site to collect data within various programmable model parameters for the processing of a detail LID model simulation.

Study on Scientific Analysis about Red Pigment And Binder - The Korean Ancient Red Pottery - (한국 고대 붉은 간토기의 적색 안료 및 교착제에 대한 과학적 분석)

  • Lee, Ui Cheon;Park, Jung Hae;Lee, Je Hyun;Kim, Soo Chul
    • Journal of Conservation Science
    • /
    • v.37 no.5
    • /
    • pp.606-616
    • /
    • 2021
  • From the collection of the National Kimhae Museum, qualitative analyses using microscopic observation, SEM-EDS, Raman spectroscopy, FT-IR-ATR spectroscopy, and GC-MS were conducted on three burnished red potteries-Jeoksaekmaoyeonwa burnished red pottery (Neolithic age red pottery), Dandomaoyeonwan burnished red pottery(Bronze age red pottery) and Jeoksaekmaoyeongajimun burnished red pottery(Bronze age red pottery)-to investigate the components of the red pigments and the binder. After the layers of the primer were separated from the red surface, crystals of red pigment particles and minerals were found on the red surface. Through SEM-EDS, Raman estimates that the red pigment is Among soil pigments with iron oxide(Fe2O3) as the main color development source, Red Ocher(Fe2O3). A band characteristic of the Urushiol polymer was detected in the FTIR-ATRspectra(4000~600cm-1), GC-MS analysis confirmed the presence of the benzenemethanol-2-prophenyl, 4-heptylphenol, 1-tetracecanol, heptafluorobutyric texidecane, all of which are the ingredients of the directional structure of the lacquer present in the red layer. Therefore, it seemed that the three burnished red pottery: Jeoksaekmaoyeonwan pottery(Neolithic age burnished red pottery), Dandomaoyeonwan pottery(bronze age burnished red pottery) and the Jeoksaekmaoyeongajimun pottery(bronze age burnished red pottery) made by mixing minerals and Red Ocher(Fe2O3), with lacquer.

Application of Analysis Models on Soil Water Retention Characteristics in Anthropogenic Soil (인위적으로 변경된 토양에서의 수분보유특성 해석 모형의 적용)

  • Hur, Seung-Oh;Jeon, Sang-Ho;Han, Kyung-Hwa;Jo, Hee-Rae;Sonn, Yeon-Kyu;Ha, Sang-Keun;Kim, Jeong-Gyu;Kim, Nam-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.823-827
    • /
    • 2010
  • This study was conducted to assess the propriety of models for soil water characteristics estimation in anthropogenic soil through the measurement of soil water content and soil water matric potential. Soil profile was characterized with four different soil layers. Soil texture was loamy sand for the first soil layer (from soil surface to 30 cm soil depth), sand for the second (30~70 cm soil depth) and the third soil layers (70~120 cm soil depth), and sandy loam for the fourth soil layer (120 cm < soil depth). Soil water retention curve (SWRC), the relation between soil water content and soil water matric potential, took a similar trend between different layers except the layer of below 120 cm soil depth. The estimation of SWRC and air entry value was better in van Genuchten model by analytical method than in Brooks-Corey model with power function. Therefore, it could be concluded that van Genuchten model is more desirable than Brook-Corey model for estimating soil water characteristics of anthropogenic soil accumulated with saprolite.