• Title/Summary/Keyword: STSAT2

Search Result 95, Processing Time 0.03 seconds

과학위성1호 비행모델 Bake-Out 시험결과 분석

  • Cho, Hyok-Jin;Seo, Hee-Jun;Lee, Sang-Hoon;Cho, Chang-Lae;Moon, Guee-Won;Choi, Seok-Weon
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.45-49
    • /
    • 2003
  • A Bake-Out test for STSAT-1 FM(Flight Model) was performed in a Bake-Out Chamber at SITC(Satellite Integration & Test Center) in KARI(Korea Aerospace Research Institute). The purpose of this test is to measure and analyze the outgassing rate to affect the optical equipment(FIMS) and to eliminate contaminants through the high temperature bake-out. This Bake-Out test is composed of three parts which are honeycomb panels & harnesses(Batch 1), an assembled satellite(Batch 2), and a disassembled satellite(Batch 3). For each test, quantitative and qualitative measurements and analysis were performed using TQCM(Thermoelectric Quartz Crystal Microbalance) and RGA(Residual Gas Analyzer.)

  • PDF

CALIBRATION ISSUES OF SPACEBORNE MICROWAVE RADIOMETER DREAM ON STSAT-2

  • Singh, Manoj Kumar;Kim, Sung-Hyun;Chae, Chun-Sik;Lee, Ho-Jin;Park, Jong-Oh;Sim, Eun-Sup;Zhang, De-Hai;Jiang, Jing-Shan;Kim, Yong-Hoon
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.398-401
    • /
    • 2006
  • Dual channel Radiometer for Earth and Atmospheric Monitoring (DREAM) is the main payload on Science and Technology SATellite-2 (STSAT-2) of Korea. DREAM is two-channel microwave radiometer with linear polarization, and operating at center frequencies of 23.8 GHz and 37 GHz. An equation for DREAM calibration is derived which accounts for losses and re-radiation in the microwave components of the radiometer due to physical temperature. This paper describes the radiometric calibration equation to get antenna temperature ($T_A$) from the measured output data. At lower altitude, the measured deep space temperature is contaminated by middle atmosphere and earth radiation. In this paper, we presented the detail mathematical formulation to find the altitude up to which cold source brightness temperature is not affected by earth and middle atmosphere radiation. The DREAMPFM data is used to calculate the performance parameters (linearity, sensitivity, dynamic range, and etc.) of the system.

  • PDF

The Conceptual Design of Mass Memory Unit for High Speed Data Processing in the STSAT-3 (고속 데이터 처리를 위한 과학기술위성 3호 대용량 메모리 유닛의 개념 설계)

  • Seo, In-Ho;Oh, Dae-Soo;Myung, Noh-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.389-394
    • /
    • 2010
  • This paper describes the conceptual design of mass memory unit for high speed data processing and mass memory management in the STSAT-3 compared to that of STSAT-2. The FPGA directly controls the data receiving from two payloads with the maximum 100Mbps speed and 32Gb mass memory management to satisfy these requirements. We used SRAM-based FPGA from XILINX having fast operating speed and large logic cells. Therefore, the Triple Modular Redundancy(TMR) and configuration memory scrubbing techniques will also be used to protect FPGA from Single Event Upset(SEU) in space.

Optomechanical Design of a Compact Imaging Spectrometer for a Microsatellite STSAT3

  • Lee, Jun-Ho;Lee, Chi-Weon;Kim, Yong-Min;Kim, Jae-Wook
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.193-200
    • /
    • 2009
  • A compact imaging spectrometer (COMIS) is currently under development for use in the STSAT3 microsatellite. COMIS images the Earth's surface and atmosphere with ground sampling distances of ${\sim}30m$ in the $18{\sim}62$ spectral bands ($4.0{\sim}1.05{\mu}m$) for the nadir looking at an altitude of 700 km. COMIS has an imaging telescope and an imaging spectrometer box into which three electronics PCBs are embedded. These are designed into a single assembly with dimensions of 35(L) $\times$ 20(W) $\times$ 12(H) $cm^3$ and a mass of 4.3 kg. Optomechanical design efforts are focused on manufacturing ease, alignment, assembly, testing and improved robustness in space environments. Finite element analysis demonstrates that COMIS will survive in launch and space environments and perform the system modulation transfer function (MTF) in excess of 0.29 at the Nyquist frequency of the CCD detector (38.5 lines-per-mm).

Memory Scrubbing for On-Board Computer of STSA T-2 (과학기술위성 2호 탑재컴퓨터의 메모리 세정 방안)

  • Ryu, Sang-Moon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.519-524
    • /
    • 2007
  • The OBC(on-board computer) of a satellite which plays a role of the controller for the satellite should be equipped with preventive measures against transient errors caused by SEU(single event upset). Since memory devices are pretty much susceptible to these transient errors, it is essential to protect memory devices against SFU. A common method exploits an error detection and correction code and additional memory devices, combined with periodic memory scrubbing. This paper proposes an effective memory scrubbing scheme for the OBC of STSAT-2. The memory system of the OBC is briefly mentioned and the reliability of the information stored in the memory system is analyzed. The result of the reliability analysis shows that there exist optimal scrubbing periods achieving the maximum reliability for allowed overall scrubbing overhead and they are dependent on the significance of the information stored. These optimal scrubbing periods from a reliability point of view are derived analytically.

Engineering Model Design and Implementation of Mass Memory Unit for STSAT-2 (과학기술위성 2호 대용량 메모리 유닛 시험모델 설계 및 구현)

  • Seo, In-Ho;Ryu, Chang-Wan;Nam, Myeong-Ryong;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.115-120
    • /
    • 2005
  • This paper describes the design and implementation of engineering model(EM) of Mass Memory Unit(MMU) for Science and Technology Satellite 2(STSAT-2) and the results of integration test. The use of Field-Programmable Gate Array(FPGA) instead of using private electric parts makes a miniaturization and lightweight of MMU possible. 2Gbits Synchronous Dynamic Random Access Memory(SDRAM) module for mass memory is used to store payload and satellite status data. Moreover, file system is applied to manage them easily in the ground station. RS(207,187) code improves the tolerance with respect to Single Event Upset(SEU) induced in SDRAM. The simulator is manufactured to verify receiving performance of payload data.