• Title/Summary/Keyword: STSAT2

Search Result 95, Processing Time 0.022 seconds

Fine Digital Sun Sensor Design and Analysis for STSAT-2 (과학기술위성 2호(STSAT-2)의 고 정밀 디지털 태양센서(FDSS) 설계 및 분석)

  • Rhee, Sung-Ho;Jang, Tae-Seong;Kim, Sae-Il;Lim, Jong-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.10
    • /
    • pp.93-97
    • /
    • 2005
  • We have developed the FDSS (Fine Digital Sun Sensor) for the space technology of the STSAT-2 (Seience & Technology Satellite 2). The FDSS is firstly developed by using CMOS image sensor(CIS) in South Korea. The FDSS consists of the optics part, FPGA(Field Programable Gate Array) part, and MCU(Micro controller unit)part. This paper will focus on the optical characteristics of the optics part and describe the configuration of FDSS with the design of aperture. We also analyze the characteristic of optics about the pixel of the CMOS image sensor.

Development of a Laser Reflector Array for STSAT2 (과학기술위성2호 레이저 반사경 조합 개발)

  • Lee, Jun-Ho;Kim, Seung-Bum;Lee, Sang-Hyun;Kim, Kyung-Hee;Im, Yong-Jo;Nam, Myung-Ryong;Lim, Jong-Tae;Sim, Eun-Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.142-147
    • /
    • 2004
  • Satellite laser ranging (SLR), which is the most accurate geodetic method for precise orbit determination of artificial satellites, will be used to determine the precise orbit of STSAT2. This paper will present the development of a Laser Reflector Array (LRA) of STSAT2. Currently one LRA was designed, analyzed, manufactured, optically tested and assembled.

Power Budget Analysis for STSAT-2 According to the Operation Mode (운용모드에 따른 과학기술위성2호의 전력 수요예측 분석)

  • Shin, Goo-Hwan;Nam, Myeong-Ryong;Lim, Jong-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.93-98
    • /
    • 2005
  • STSAT-2 will be launched on December 2007 by the first Korean launch vehicle KSLV-1, and its one of the main instruments is DREAM (Dual Channel Radio Frequency and Environment Atmosphere Monitoring) which detects a signal for atmosphere from the Earth by using micro-wave signal. The STSAT-2 has many units for technology demonstration such as FDSS (Fine Digital Sun Sensor) and DHST (Dual Head Star Tracker) including PPT (Pulsed Plasma Thruster) for attitude control and momentum dumping in the space. In this paper, the power budget analysis for STSAT-2 will be studied and provided for supporting the whole mission life time during the mission of its spacecraft.

과학기술위성 2호 시스템

  • Lee, Seung-Hun;Park, Jong-Oh;Sim, Eun-Sup
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.60-64
    • /
    • 2005
  • STSAT-2 will demonstrate the scientific mission(acquisition of brightness temperature of the earth at 23.8 GHz and 37 GHz) and spacecraft technologies(laser ranging, frame-type satellite structure, Dual-head star tracker, CCD sun sensor, pulsed plasma thruster, etc.). In this paper STSAT-2 satellite system is described. It includes the definition of the system and the overview of payloads and BUS.

  • PDF

Analysis on Environmental Test Specifications for Solar Panels of STSAT-2 (과학기술위성 2호 태양전지판의 환경시험 규격에 대한 고찰)

  • Jang, Tae-Seong;Kim, Hong-Bae;Woo, Sung-Hyun;Lee, Sang-Hyun;Nam, Myeong-Ryong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.957-961
    • /
    • 2005
  • A satellite component must withstand vibration caused when launch vehicle acoustics and engine rumble transfer to it through its structural mount. Components shall be subjected to environmental tests after manufacturing process thus the environmental test conditions are needed for component level test including vibration and shock. This paper deals with derivation of component-level environmental test specifications, especially for solar panels of STSAT-2(Science & Technology SATellite-2). Sine sweep random vibration, and shock test conditions were generated for solar panels by assuming the satellite as single-degree-of-freedom system with a base excitation.

  • PDF

THE LYMAN-α IMAGING SOLAR TELESCOPE (LIST) ON THE KOREA SCIENCE AND TECHNOLOGY SATELLITE-2 (STSAT-2)

  • JANG M.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.145-149
    • /
    • 2003
  • LIST is the Lyman-$\alpha$ Imaging Solar Telescope, a project funded by the Korean government to fly on the second Korean Science and Technology research Satellite (STSat-2) due to launch in December 2005. The Principal Investigator is Dr. Minhwan Jang of Kyung-Hee University and of the Space Payload Research Center (SPARC), a consortium of Korean universities and institutions formed to develop scientific research projects in space. The purpose of the LIST project is to design, build, and operate an instrument on STSat-2 which will make images of the Sun from Earth orbit at the wavelength of the Hydrogen Lyman-a emission line at 121.6 nm. LIST has a simple design concept comprised of a small telescope to image the full disk of the Sun onto a CCD detector and a set of filters to isolate the 121.6 nm wavelength.

STSAT-2 주탑재체 LIST의 Progress Report 2

  • 장민환
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.45-45
    • /
    • 2003
  • 경희대학교 우주탑재체 연구센터에서 개발중인 과학기술위성 2호(STSAT-2) 주탑재체인 Lyman-alpha Imaging Solar Telescope(LIST)의 개발 현황에 대해 논의한다. LIST는 2002년 10월에 개발에 착수한 후 상위수준의 시스템 디자인을 확정하는 System Design Review(SDR)에 이어, 현재 기초 기기 디자인을 수행하는 Preliminary Design Review(PDR) 단계에 와 있다. 본 연구에서는 LIST의 각 부분별 상세 디자인과 시스템 엔지니어링에 대해 논의한다.

  • PDF

DESIGN OF HIGH SENSITIVE SP ACEBORNE MICROWAVE RADIOMETER DREAM ON STSAT-2

  • Kim Sung-Hyun;Lee Ho-Jin;Yun Seok-Hun;Chae Chun-Sik;Park Hyuk;Kim Yong-Hoon;Park Jeong-oh;Sim Eun-Sup;Zhang De-Hai;Jiang Jing-Shan
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.526-529
    • /
    • 2005
  • Dual-channel Radiometers for Earth and Atmosphere Monitoring (DREAM) is the Korean first spaceborne microwave radiometer which is the main payload of Science and Technology SATellite-2 (STSAT-2). STSAT-2 will be launched by Korea Space Launch Vehicle-l (KSL V-I) at NARO Space Center in Korea in 2007. DREAM is a two-channel, total power microwave radiometer with the center frequencies of 23.8 GHz and 37 GHz. The spaceborne radiometer is composed of an antenna unit, a receiver unit, and a data acquisition/processing unit. The bandwidths of radiometer are 600 MHz at 23.8 GHz and 1000 MHz at 37 GHz. The integration time of two channels is 200 rns. The sensitivity of DREAM is less than 0.5 K. This paper presents the required performance and system design of DREAM in detail.

  • PDF

SYSTEM INTEGRATION AND PERFORMANCE TEST OF DREAM ON STSAT-2

  • Kim, Sung-Hyun;Lee, Ho-Jin;Moon, Nam-Won;Wi, Hoon;Seong, Jin-Taek;Lee, Sang-Hyun;Park, Jong-Oh;Sim, Eun-Sup;Zhang, De-Hai;Jian, Jing-Shan;Kim, Yong-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.374-377
    • /
    • 2007
  • Dual-channel Radiometers for Earth and Atmosphere Monitoring (DREAM) was developed as the Korean first spaceborne microwave radiometer for earth remote sensing. It is the main payload of the Science and Technology SATellite-2 (STSAT-2). STSAT-2 will be launched by Korea Space Launch Vehic1e-l (KSLV-1) at NARO Space Center in Korea in 2008. The DREAM is a two-channel, total power microwave radiometers with the center frequencies of 23.8 GHz and 37 GHz. The bandwidths of radiometer are 600 MHz at 23.8 GHz and 1000 MHz at 37 GHz. The integration time is 200 ms and the required sensitivity is less than 0.5 K. In this paper, we summarize the specification and performance of the developed DREAM firstly. And we describe system integration and performance test of DREAM mounted on spacecraft.

  • PDF

Protoflight Model Development of Retroreflector Array for STSAT-2 (과학기술위성2호 레이저반사경의 준비행모델 개발)

  • Lee, Sang-Hyun;Kim, Kyung-Hee;Lee, Jun-Ho;Jin, Jong-Han;Kim, Hyung-Myung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1135-1142
    • /
    • 2007
  • STSAT-2 has an on-board satellite retroreflector array for precise orbit determination. Satellite retroreflector array reflects photon emitted from laser and uses to determine precisely the distance from ground station to satellite by the round-trip travel time of photon. The retroreflector array of protoflight model has been developed and verified through environmental tests. This paper describes the protoflight model of retroreflector array and reports environmental test results. The environmental tests of protoflight model retroreflector array were performed successfully without damage of corner cube prism occurred in engineering model development.