• 제목/요약/키워드: STS304

검색결과 368건 처리시간 0.029초

레이져 절단에서 노즐이 미치는 영향

  • 이호준;김재도
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 추계학술대회 논문집
    • /
    • pp.81-85
    • /
    • 1992
  • Quality of cut is strongly dependent on the cutting pressure, so this relationship can be identified by pressure measuring system. In this paper, the experiments presented were performed with the devised pressure measuring system and the laser cutting of STS 304. Convergent type and convergent-divergent type nozzle were used for pressure variation of the distance between nozzle and workpiece. In laser cutting of STS 304, 1.0 kW CO $\_$2/ laser used. The convergent type nozzle(1.0 mm diameter) pressured above 3 kgf/cm $\^$2/, the MSD(Mach Shock Disk) created, which caused the the pressure variations of the distance between nozzle and workpiece. The maximum cutting pressure exists in accordance with the variation of distance. In spite of far distance the maximum cutting pressure is achieved by using the pressure measuring system. The higher cutting pressure beneath the workpiece the less quantity of dross and the kerf width. Since the higher cutting pressure helps to remove the quantity of dross and to stop the exothermic energy into the material. The optimum laser cutting parameter of STS 304(2.0 mm thickness) with the convergent type nozzle(1.0 mm diameter)is 0.75 mm and 2.5 mm distance between nozzle and workpiece, 4 kgf/cm $\^$2/ cutting pressure. In 3.0 mm thickness case, 1.5 mm and 2.25 mm distance is achieved for good quality.

이종재료(STS304+Al6061) TIG-FSW Hybrid 용접부의 열 특성 해석 (Analysis of Complex Heat Distribution in TIG Assisted Friction Stir Welding of Dissimilar Materials (STS304+Al6061))

  • 엠.에스.비죠이;방희선;방한서
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2010년도 춘계학술발표대회 초록집
    • /
    • pp.59-59
    • /
    • 2010
  • Friction stir welding has become a viable and important manufacturing alternative or fabrication component, especially in aerospace and automobile applications involving aluminium alloys. In recent years, there is an increasing interest for FSW of dissimilar metals and alloys, particularly systems which are difficult to weld by conventional, thermal (or fusion) welding. In this study we tried to analyse the complex heat distribution occurring in TIG assisted FSW of dissimilar butt joint (STS304 and Al6061). For this, an analytical model for heat generation by FSW based on contact conditions has been developed. The heat input was calculated considering the coefficient of friction and slip factor between each work piece material with the tool material. The thermal model is used to generate the temperature characteristics curve, which successfully predicts the maximum welding temperature in each alloys. The analysis was carried out using the in-house solver.

  • PDF

용접열사이클 재현에 의한 SS400강 및 STS304강의 특성 평가 - 제1보 : 기계적 특성 및 조직 (Evaluation of Characteristic for SS400 and STS304 steel by Weld Thermal Cycle Simulation - 1st Report : on the Mechanical Properties and Microstructure)

  • 안석환;정정환;남기우
    • 한국해양공학회지
    • /
    • 제19권6호통권67호
    • /
    • pp.64-71
    • /
    • 2005
  • The welding methods have been applied to the most structural products used in the automobile, ship construction, and construction. The structure steel must have sufficient strength of structure; However, the mechanical properties of the welded part changes when it is welded. Therefore, the stability or life of the structure may be affected by the changed mechanical properties. The mechanical properties of the welded part must be examined in order to ensure the safety of structure. In this research, the SS400 steel and the STS304 steel were used to estimate the mechanical properties of the HAZ by weld thermal cycle simulation. In this study, the materials were used to examine the weld thermal cycle simulation characteristic, under two conditions: the drawing with diameter of $\Phi$10 and the residual stress removal treatment. To examine the mechanical properties by the weld thermal cycle simulation, the tensile test was carried out in room temperature. The crosshead speed was lmm/min.

용접열사이클 재현에 의한 SS400강 및 STS304강의 특성 평가 - 제3보: 잔류응력과 초음파 파라미터 (Evaluation of Characteristic for SS400 and STS304 Steel by Weld Thermal Cycle Simulation - 3rd Report: Residual Stress and Ultrasonic Parameter)

  • 안석환;최문오;정정환;김성광;남기우
    • 한국해양공학회지
    • /
    • 제22권6호
    • /
    • pp.27-34
    • /
    • 2008
  • The temperature distribution in the weldment is not uniform because a weldment is locally heated. Thermal plastic deformation results from the local expansion and shrinkage by the heating and cooling of metal. Therefore, residual stresses and distortion occur in the weldment. In this study, we had conducted on the weld thermal cycle simulation that is supposed as the HAZ on SS400 steel and STS304 steel. The residual stresses that were obtained from the drawing and the weld thermal cycle simulation were estimated by X-ray diffraction. We also carried out ultrasonic test for the weld thermal cycle simulated specimens, and then conducted on nondestructive evaluation by the ultrasonic parameters obtained ultrasonic test. From the results, residual stresses of weld thermal cycle simulated specimens after the residual stress removal heat treatment are lower than that of the drawing.

균열 진전의 효과를 고려한 $C^*$ 적분의 수정 (A Modification of the $C^*$ Integral Considering the Effect of Crack Growth)

  • 최영환;방종명;염윤용;송지호
    • 대한기계학회논문집
    • /
    • 제13권1호
    • /
    • pp.77-86
    • /
    • 1989
  • 본 연구에서는 $C^{*}$ 적분을 수정하여 균열 진전의 효과를 배제하는 새로운 크립 파괴의 하중 매개변수 $C_{m}$ 을 제안하고 그 타당성을 검토한다. 또한 $C_{m}$ 의 전개 과정에서 유도되는 다른 하중 매개변수들의 특성과 그 이용가능성을 조사한다. 균열 진전 속도가 $C^{*}$ 의 지배를 받는 것으로 알려져 있는 스테인레스 강(stainless steel) STS 304(KS 규격)를 사용한 크립파괴 실험을 600.deg. C에서 수행하여 $C_{m}$ 의 크립 파괴에 대한 적용 가능성을 조사하도록 한다.

초음파 검사법을 이용한 STS304 배관재 내부 균열 측정 방법에 대한 연구 (A study on the detection method of inner's crack of STS304 pipe using Ultrasonic Testing)

  • 황웅기;이경민;우영관;서덕희;이보영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2011년도 정기 학술대회
    • /
    • pp.415-418
    • /
    • 2011
  • Thermal fatigue is one of the life-limiting damage mechanisms in the nuclear power plant conditions. The turbulent mixing of fluids of different temperatures induces rapid temperature changes to the pipe wall. The successive thermal transients cause varying cyclic thermal stresses. These cyclic thermal stresses cause fatigue crack nucleation and growth similar to the cyclic mechanical stresses. The aim of this study was to fulfil the need by developing an real crack manufacturing method, which would produce realistic cracks. The test material was austenitic STS 304, which is used as pipelines in the reactor coolant system of a nuclear power plants. In order to fabricate thermal fatigue crack similar to realistic crack, successive thermal transients were applied to the specimen. Thermal transient cycles were combined with heating (60sec) and cooling cycle (30sec). And, In order to identify ultrasonic characteristic, it was performed the ultrasonic reflection measuring method for the fabricated specimen. From the results of ultrasonic reflection measuring testing, it was conformed that A-scan results(average 83% of real crack depth) for the TFC reference specimen was more enhanced NDT reliability than results(average 38% of real crack depth) for the EDM notch reference specimen.

  • PDF

Investigation on Ultimate Strength of STS304L Stainless Steel Welded Connection with Base Metal Fracture Using Finite Element Analysis

  • Lee, HooChang;Kim, TaeSoo;Hwang, BoKyung;Cho, TaeJun
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1139-1152
    • /
    • 2018
  • Many studies on the application of stainless steels as structural materials in buildings and infra-structures have been performed thanks to superior characteristics of corrosion resistance, fire resistance and aesthetic appeal. Experimental investigation to estimate the ultimate strength and fracture mode of the fillet-welded connections of cold-formed austenitic stainless steel (STS304L) with better intergranular corrosion resistance than that of austenitic stainless steel, STS304 commonly used has carried out by authors. Specimens were fabricated to fail by base metal fracture not weld metal fracture with main variables of weld lengths according to loading direction. All specimens showed a block shear fracture mode. In this paper, finite element analysis model was developed to predict the ultimate behaviors of welded connection and its validity was verified through the comparison with test results. Since the block shear behavior of welded connection due to stress triaxiality and shear-lag effects is different from that of bolted connection, stress and strain distributions in the critical path of tensile and shear fracture section were investigated. Test and analysis strengths were compared with those by current design specifications such as AISC, EC3 and existing researcher's proposed equations. In addition, through parametric analysis with extended variables, the conditions of end distance and longitudinal weld length for block shear fracture and tensile fracture were suggested.

가공식품 설비의 재질별 베이스 프레임에 관한 변형 및 하중 구조해석 (Structural Analysis of Deformation and Force on Base Frame by Materials of Processed Food Equipment)

  • 김기홍;김석호;최원식
    • 한국산업융합학회 논문집
    • /
    • 제25권5호
    • /
    • pp.741-746
    • /
    • 2022
  • In this paper, structural analysis was conducted on the base frame for materials of the conveyor system that automatically produces nurungji. The materials of the base frame were selected as SS400, STS304, Al6063-5. Structural analysis performed Von-Mises stress and maximum displacement for 38 hot plates in real situation, and performed weight of distribution force for yield strength, and calculated safety factor. SS400 and STS304 have little displacement, but Al6063-5 is deformed to 0.149mm, which is 2.6 times greater than other materials. However, since the safety factor was calculated as 8.5, it can be applied to the applicable food processing equipment. The weight of the distributed force for the yield strength of the materials was 17.7kN for SS400, 14.7kN for STS304, and 10.2kN for Al6063-T5. When manufacturing other processed foods with a base frame of the same size, a material suitable for the corresponding weight should be selected.

LNG 304 스테인레스강의 피로균열전파특성과 변형유발 마르텐사이트 함량의 변화 (Characteristics of Fatigue Crack Propagation and Changes in Strain Induced Martensite α' of STS 304 Stainless Steel)

  • 김송희;박형래;이현승
    • 산업기술연구
    • /
    • 제21권B호
    • /
    • pp.341-348
    • /
    • 2001
  • The effect of initial ${\alpha}^{\prime}$ in STS 304 Stainless Steel on fatigue resistance, and fatigue crack propagation behavior was studied with using C-T specimens. Higher ${\Delta}K_{th}$ was observed in the specimens with the content of 0% initial ${\alpha}^{\prime}$ than in the contents of 2% and 33% initial ${\alpha}^{\prime}$. The difference of da/dN at the same level of ${\Delta}K$ was distinctive in low and intermediate level of ${\Delta}K$ however became less different as the level of ${\Delta}K$ increased. It is because the formation of strain induced martensite occurred readily in lower ${\alpha}^{\prime}$ at the vicinity of the fatigue crack tip, which causes compressive residual stresses resulting in the enhancement of crack closure. In general fatigue cracks propagated transgranular mode and many segments of ridges were observed on the fracture surfaces. At the higher contents of initial ${\alpha}^{\prime}$ appeared the smaller size of ridge segments. Slips in austenite were blocked more frequently by the martensite colonies formed in austenite.

  • PDF

STS304 TIG 용접시 발생하는 잔류응력과 열응력 해석에 관한 연구 (A Study on the Analysis of the Thermal Stress and Residual Stress in Process of STS304 TIG Welding)

  • 고준빈;박희상
    • 한국공작기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.1-10
    • /
    • 2008
  • Residual stress caused in the weldments with high restraint force are often during welding observed in the weldments of large size nozzles or radial tanks. The reason is that quantitative analysis about thermal stresses during welding is lack for this weldments. To verify Finite Elements Method(FEM) theory, the temperature was measured with thermocouple in a real time in this paper. Also analysis of the thermal stress for welding condition is performed by ABAQUS program package on various welding condition in 304 stainless steel butt welding.