• 제목/요약/키워드: STS 316L stainless steel

검색결과 68건 처리시간 0.022초

Filler metal을 이용한 Stainless steel필터의 제조 및 통기도 (Fabrication and Permeability of Stainless Steel Filter by using Filler Metal)

  • 배승열;안인섭;성택경;최주호
    • 한국분말재료학회지
    • /
    • 제11권4호
    • /
    • pp.288-293
    • /
    • 2004
  • The application concept of using a fail safety filter on the filtering system is to prevent the particle leakage when the main filter element is broken at high temperature. In this study, the metal filters were fabricated by pressureless sintering method. The mixture of stainless steel powders and filler metal binder solved in the water solutions of 5% PVA was compacted to form the cylindrical filter without pressure. The compacted filter were sintered in the vacuum sintering furnace at 120$0^{\circ}C$ for 1 hour. The metal filter(produced with powder of 640-840 ${\mu}m$ size) having more than above 50% porosity, 500${\mu}m$ pore size, and permeability of 7.3${\times}$10$^{-11}$m$^{2}$ plugged within 2.5 minute to prevent the leakage of maximum slip particle size of less than 3${\mu}m$.

An Investigation on Application of Experimental Design and Linear Regression Technique to Predict Pitting Potential of Stainless Steel

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • 제20권2호
    • /
    • pp.52-61
    • /
    • 2021
  • This study using experimental design and linear regression technique was implemented in order to predict the pitting potential of stainless steel in marine environments, with the target materials being AL-6XN and STS 316L. The various variables (inputs) which affect stainless steel's pitting potential included the pitting resistance equivalent number (PRNE), temperature, pH, Cl- concentration, sulfate levels, and nitrate levels. Among them, significant factors affecting pitting potential were chosen through an experimental design method (screening design, full factor design, analysis of variance). The potentiodynamic polarization test was performed based on the experimental design, including significant factor levels. From these testing methods, a total 32 polarization curves were obtained, which were used as training data for the linear regression model. As a result of the model's validation, it showed an acceptable prediction performance, which was statistically significant within the 95% confidence level. The linear regression model based on the full factorial design and ANOVA also showed a high confidence level in the prediction of pitting potential. This study confirmed the possibility to predict the pitting potential of stainless steel according to various variables used with experimental linear regression design.

가공 온도가 다른 STS316L의 탄성파 특성 (Elastic Wave Properties of STS316L with Different Rolling Temperature)

  • 탁영준;구경희;이금화;남기우
    • 한국산업융합학회 논문집
    • /
    • 제25권3호
    • /
    • pp.325-331
    • /
    • 2022
  • In this study, austenitic 316L stainless steel was rolled at three different temperatures (100℃, -50℃, -196℃) at five rolling degree (0, 16, 33, 50, 66 and 80%). The rolled specimen was examined for micro structure, and the volume fraction and mechanical properties were evaluated. In particular, the rolling specimen detected the elastic wave generated in tensile and investigated the relationship between the rolling degree and the dominant frequency. As the rolling degree increased, austenite decreased and martensite increased. The volume fraction of martensite more increased at lower temperatures, but increased rapidly at the rolling degree of 50% of all rolling temperature. Tensile strength increased rapidly with the increase of the rolling degree, and was larger at lower temperatures. The elongation decreased sharply to the rolling degree of 33%, but decreased gently thereafter. The dominant frequency highly appeared as the volume fraction of martensite increased, but the dominant frequency was higher at the low temperature rolling temperature. A similar trend was also observed in the relationship between tensile strength and dominant frequency.

파이버 레이저의 스테인리스강 용접시 인프로세스 모니터링을 위한 유기 플라즈마와 방사신호간의 상관성 연구(II) - 후판 용접시 측정신호의 특성 변화 - (A Study on Correlationship between the Induced Plasma and Emission Signals for In-process Monitoring in Stainless Steel Welding of Fiber Laser (II) - Properties Changes of the Measured Signals in a Thick Plate Welding -)

  • 이창제;김종도
    • Journal of Welding and Joining
    • /
    • 제32권6호
    • /
    • pp.70-74
    • /
    • 2014
  • On this study, we researched the in-process monitoring during fiber laser welding as well as on the first paper. On the previous/formal study, we analyzed the change of emission signal on thin plate welding. On this study, however, we analyzed RMS and FFT with emission signals in laser welding on lap joint and butt joint of 8mm-thick 316L stainless steel. As the result, the movement of specific frequency peak was observed according to welding speed changes. Furthermore, frequency peak as a result of FFT on the thick plate welding are much clearer than on the thin plate welding. Therefore, it is expected that the welding parameter changes can be predicted in case of applying FFT to in-process monitoring.

스테인리스강과 양극산화된 알루미늄 합금의 전기화학적 부식특성에 미치는 해수온도의 영향 (The Effect of Seawater Temperature on the Electrochemical Corrosion Behaviour of Stainless Steels and Anodized Aluminum Alloys)

  • 정상옥;김성종
    • Corrosion Science and Technology
    • /
    • 제20권2호
    • /
    • pp.85-93
    • /
    • 2021
  • The corrosion damage of materials in marine environment mainly occurs by Cl- ions due to the breakdown of passive films. Additionally, various characteristics in seawater such as salinity, temperature, immersion time, flow rate, and biological activity also affect corrosion characteristics. In this study, the corrosion characteristics of stainless steels (STS 304 and STS 316L) and anodized aluminum alloys (AA 3003 and AA 6063) were evaluated with seawater temperature parameters. A potentiodynamic polarization experiment was conducted in a potential range of -0.25 V to 2.0 V at open circuit potential (OCP). Corrosion current density and corrosion potential were obtained through the Tafel extrapolation method to analyze changes in corrosion rate due to temperature. Corrosion behavior was evaluated by measuring weight loss before/after the experiment and also observing surface morphology through a scanning electronic microscope (SEM) and 3D microscopy. Weight loss, maximum damage depth and pitting damage increased as seawater temperature increased, and furthermore, the tendency of higher corrosion current density with an increase of temperature attributed to an increase in corrosion rate. There was lower pitting damage and lower corrosion current density for anodized aluminum alloys than for stainless steels as the temperature increased.

스테인리스강의 표면 결점 개선을 위한 진동 전기화학 폴리싱 (Vibration Electrochemical Polishing (VECP) for Improved Surface Defects of Stainless Steel)

  • 김욱수;박정우
    • 한국생산제조학회지
    • /
    • 제22권5호
    • /
    • pp.795-799
    • /
    • 2013
  • This paper describes a novel hybrid surface polishing process combining non-traditional electrochemical polishing (ECP) with external artificial ultrasonic vibration. The purpose of this study is to develop an easier method for improving stainless steel surfaces. To this end, vibration electrochemical polishing (VECP), a novel ultrasonic manufacturing process, for enhancing electrochemical reaction and surface quality compared with that achieved using conventional ECP is suggested. In addition, for finding the optimized experimental conditions, the two methods are compared under various current densities. Localized roughness of the work material is measured with atomic force microscopy (AFM) and scanning electron microscopy (SEM) for obtaining detailed surface information.

스테인레스 강의 전해연마 가공특성에 관한 연구 (A Study on the Machining Characteristics of Electropolishing for Stainless Steel)

  • 박정우
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 추계학술대회 논문집
    • /
    • pp.186-191
    • /
    • 1998
  • Electropolishing is the anodic dissolution process in the transpassive state. It removes non-metallic inclusions and improves mechanical and corrosion resistance of stainless steel. If there is a Bailby layer, it will be recovered again. Electropolishing is normally used to remove a very thin layer of material on the surface of a metal component. The aim of this study is to determine the tendencies of electropolishing STS316L tubes in terms of current density, machining time, temperature, electrode gap and surface roughness.

  • PDF

유한요소해석을 이용한 파열판의 특성 예측 (Property Prediction of Rupture Disc by Using Finite Element Analysis)

  • 한창용;이성범;정희석;김태구
    • 한국가스학회지
    • /
    • 제13권3호
    • /
    • pp.1-6
    • /
    • 2009
  • 최근 화학 산업이 발전함에 따라 고압설비가 널리 이용되고 있다. 이러한 고압 설비는 편리성과 함께 많은 위험을 내포하고 있다. 파열판 안전장치는 고압설비의 안전사고로부터 설비와 생명을 보호하는 장치이다. 파열판 안전장치는 홀더, 파열판, 버큠서포트로 구성되어져 있으며, 다양한 환경 조건에서 부식되거나 파괴되는 단점이 있다. 본 논문에서는 부식 저항성이 우수하여 파열판 안전장치의 소재로 많이 사용되고 있는 STS 316L stainless steel 소재를 이용해서 제작한 파열판 안전장치를 CATIA V5를 이용하여 3차원 모델링을 수행하고, 유한요소해석을 통하여 소재의 두께와 높이에 따라 파열판 안전장치의 파열에 영향을 미치는 요인을 분석하였다.

  • PDF

초저온 액화질소 저장탱크 오스트나이트계 스테인리스강의 용접부의 파괴인성 연구 (A Study on the Weld Part Fracture Toughness of Austenite Type Stainless Steel for Cryogenic Liquid Nitrogen Storage Tank)

  • 김영득;최동준;박형욱;조종래;배원병
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권6호
    • /
    • pp.802-808
    • /
    • 2011
  • 극저온 온도 구조 재료의 중요한 기계적 성질 중 하나는 파괴 인성이다. 파괴 인성 시험 방법의 규격화에 대한 연구는 극저온 구조 요소의 개발과 함께 매우 중요한 문제가 되고 있다. 특히 용접부의 경우 극저온 환경 하에서 사용할 때 불안정파괴를 유발할 수 있기 때문에 용접부의 각 미세조직에 따른 기계적 성질 평가가 중요하다. 본 연구에서는 STS-316L 모재와 용접재를 대상으로 액체질소(77K), 액체헬륨(4K), 293K 온도에서 제하컴플라이언스법과 예민화 열처리한 소형화된 시험편 대상으로 파괴인성평가 실험을 수행하였다.

Mechanical and thermal properties of 3D printing metallic materials at cryogenic temperatures

  • Jangdon Kim;Jaehwan Lee;Seokho Kim
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제26권2호
    • /
    • pp.24-30
    • /
    • 2024
  • Metal 3D printing is utilized in various industrial fields due to its advantages, such as fewer restrictions on production shape and reduced production time and cost. Existing research on 3D printing metal materials focused on changes in material properties depending on manufacturing conditions and was mainly conducted in a room temperature environment. In order to apply metal 3D printing products to cryogenic applications, research on the properties of materials in cryogenic environments is necessary but still insufficient. In this study, we evaluate the properties of stainless steel (STS) 316L and CuCr1Zr manufactured by Laser Powder Bed Fusion (LPBF) in a cryogenic environment. CuCr1Zr is a precipitation hardening alloy, and changes in material properties were compared by applying various heat treatment conditions. The mechanical properties of materials manufactured using the LBPF method are evaluated through tensile tests at room temperature and cryogenic temperature (77 K), and the thermal properties are evaluated by deriving the thermal conductivity of CuCr1Zr according to various heat treatment conditions. In a cryogenic environment, the mechanical strength of STS 316L and CuCr1Zr increased by about 150% compared to room temperature, and the thermal conductivity of CuCr1Zr after heat treatment increased by about 6 to 10 times compared to before heat treatment at 40 K.