• 제목/요약/키워드: STS 304

검색결과 368건 처리시간 0.024초

압력용기용 고온재료의 ISM에 의한 크리프 수명예측(II) (Creep Life Prediction by ISM of Elevated Temperature Materials for Pressure Vessel(II))

  • 공유식;김헌경;황성필;김일석;오세규
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.307-313
    • /
    • 2001
  • In this Paper, friction welding optimization for 1Cr0.5Mo-STS304($\Phi$14mm), AE applications for the weld quality evaluation and the applications of various life prediction methods such as LMP(Larson-Miller Parameter) and ISM(initial strain method) were investigated : the creep behaviors of those steels and the friction welded joints under static load were examined by ISM combined with LMP at 400, 500, 550 and $600^{\circ}C$, and the relationship between these two kinds of phenomena was studied. The real-time predicting equations of elevated-temperature creep life(fracture time) under any creep stress at any elevated- temperature could be developed by LMP and LMP-ISM, It was confirmed that the life prediction equations by LMP and LMP-ISM are effective only up to 10$^2$hrs and can not be used for long times of 10$^3$-10$^{6}$ hrs, but by ISM it can be used for long times creep prediction of more than 10$^4$hrs with most reliability.

  • PDF

열화상기술을 이용한 모멘트 변화에 따른 피로균열진전 연구 (A Study of the Fatigue Crack Propagation Behavior According to the Moment Change using Infrared Thermography)

  • 김경석;정현철;박찬주;정덕운;장호섭
    • 한국생산제조학회지
    • /
    • 제19권3호
    • /
    • pp.359-364
    • /
    • 2010
  • The objective of this study is to propose an effective method for measurement and analysis of fatigue crack. A technique that can measure the statue of fatigue crack propagation fast and correctly for enhancing safety of constructions and securing reliability is necessary. Moreover, the crack propagation behavior characteristics evaluation technique has to be developed using this technique. In this paper, fatigue crack was caused via the fatigue experiment with repeated load on the CT specimen that is made up of STS304. Fatigue crack propagation was measured by tracing the position of the maximum temperature according to the cycles using infrared thermography. The crack growth characteristics was evaluated by applying the moment values on the measuring area to the measured value. As a result of this study, the possibility that the infrared thermography could be applied to measure the fatigue crack was identified. Moreover, it was identified that fatigue crack propagation have a relationship with the moment value of construction.

고속회전을 이용한 마이크로 엔드밀의 가공특성 (Machining characteristics of micro end-mill using high revolution)

  • 김기수;김상진;조병무;김형철
    • 대한공업교육학회지
    • /
    • 제31권2호
    • /
    • pp.350-363
    • /
    • 2006
  • 최근 마이크로 엔드밀을 이용한 가공은 소형구조물이나 소형기계의 부품과 금형산업에서 양호한 표면 거칠기와 가공시간의 단축을 위해 고정도의 기술을 요구하고 있다. 마이크로 엔드밀을 이용한 가공에 있어서 가공조건은 절삭면의 표면거칠기에 커다란 영향을 미치게 된다. 따라서 본 연구에서는 마이크로 엔드밀을 이용하여 스테인리스 강(STS 304)의 표면을 가공하였고, 실험계획법에 의해 최적의 표면거칠기를 얻기 위한 가공조건에 대해 분산분석하였다. 본 연구를 통하여 마이크로 엔드밀에 의한 가공에서 가공조건은 절삭깊이, 스핀들의 회전수, 이송속도의 순서로 표면거칠기에 영향을 미치는 것을 알았다.

알루미늄 용해 반사로용 gas 배출기의 bag cage에서 발생한 균열의 원인 분석 (Cause Analysis of Crack in Bag Cage Welds of Wire STS 304 Wire for A1 Melting Reverberatory)

  • 박지환;박수연;이종권;송태환;류근걸;이윤배
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2004년도 춘계학술대회
    • /
    • pp.54-57
    • /
    • 2004
  • 알루미늄 용해반사로 gas 배출기의 bag cage에서 사용 6개월만에 균열이 발생하였다. 이러한 bag cage의 용접부에서 발생한 균열의 원인조사를 위해 bag cage의 성분분석, 용접부에서의 파단면과 미세조직을 SEM과 금속현미경으로 관찰한 결과 bag cage의 균열의 원인이 배기가스중의 황화물과 대기중의 습기, 산소와 반응에 의해 형성된 Polythionic acid이 생성되어 용접에 의해 예민화 된 부위에 부식을 일으켰다는 것을 확인할 수 있었다.

  • PDF

무금형 점진 판재 성형에서 공구경로 최적화를 위한 성형한계에 관한 연구 (Studies on the forming limits for optimization of the tool path in Dieless incremental sheet metal forming)

  • 이승진;김민철;이영선;권용남;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.249-252
    • /
    • 2005
  • Recently, as the industrial demand for small quantity batch production of sheet metal components, the application of dieless forming technology to production of these component rise with the advantages of the reduction in manufacturing cost and time. In dieless forming processes, the determination of moving path of tool plays an important role in producing successfully formed parts. In order to obtain the optimized moving path of tool avoiding forming failure, it is necessary to examine the forming limit of sheet material. Therefore, in this study, as the new criterion to evaluate the formability of sheet material in dieless forming processes FDD(feeding depth diagram) with respect to feeding depth and punch diameter is proposed. Thus, the FDD for the sheet materials of STS304 and Ti-grade2 were obtained from a series of FDT(feeding depth test). In addition the possibility of the application of FLD in judging forming severity in dieless forming processes was investigated by comparing the results of FE analyses based on FLD and experimental FDT.

  • PDF

저출력 펄스형 Nd:YAG 레이저를 사용한 클래딩에서 클래딩 변수들이 용착효율에 미치는 영향 분석 및 최적화 (Analysis and Optimization of the Cladding Parameters for Improving Deposition Efficiency in Cladding using a Low Power Pulsed Nd:YAG Laser)

  • 이형근
    • Journal of Welding and Joining
    • /
    • 제25권4호
    • /
    • pp.49-57
    • /
    • 2007
  • The optimization of the cladding parameters was studied to maximize the deposition efficiency in the laser cladding using a low power pulsed Nd:YAG laser. STS304 stainless steel plate and Co alloy powder were used as a substrate and powder for cladding, respectively. The six cladding parameters were selected through preliminary experiments and their effects on the deposition efficiency were analyzed statistically. Experiments were designed and carried out using the Taguchi experimental method using a L18 orthogonal array. It was found from the results of analysis of variance(ANOVA) that the powder feed position and powder feed angle had the most significant effects on the deposition efficiency, but the powder feed rate and laser focal position had nearly no effects. The deposition efficiency could be maximized at 0mm of the powder feed position and 50o of the powder feed angle in the experimental range. From this experimental analysis, a new laser cladding head with 20o of the powder feed angle was designed and manufactured. With a new laser cladding head, the highest deposition efficiency of 12.2% could be obtained.

350A 벨로우즈형 신축관이음의 내진특성 평가 (Seismic Stability Evaluation of Bellows Type Expansion Joints Piping System(350A))

  • 손인수
    • 한국산업융합학회 논문집
    • /
    • 제23권4_2호
    • /
    • pp.653-659
    • /
    • 2020
  • In this study, seismic verification of the bellows used in the plant field was conducted. The pressure used in the analysis was analyzed by applying the design pressure of 15.7bar. For the seismic analysis, the natural frequency of the bellows system was obtained and the stability of the system was evaluated by static seismic analysis comparing the lowest order natural frequency with the dominant frequency of 33 Hz. The material of the bellows system is STS304, and the safety factor is obtained in comparison with the allowable stress. For the seismic analysis, the design response spectrum was prepared and the maximum acceleration was applied to the static seismic analysis and the stability of the entire system was confirmed. Compared to the structural analysis results, the maximum stress of the bellows system increased by about 16.4% and the maximum strain increased by about 3 times when seismic analysis was performed.

철강 하니콤구조의 접합강도 (Bond Strength of Steel honeycomb Structure)

  • 송건;홍영환
    • 열처리공학회지
    • /
    • 제16권4호
    • /
    • pp.197-204
    • /
    • 2003
  • Honeycomb structure has been fabricated by brazing method using 0.1 wt%C and 1.0wt%C carbon steel core and STS304 stainless steel face sheet. Core shear strength ratio in W and L directions was 1:1.03 in 7 mm cell size, whereas 1:1.45 in 4 mm cell size. Flexural strength on face sheet was 166.4 MPa (0.1 wt%C, W direction), 171.1 MPa (0.1 wt%C, L direction), and 120.2 MPa (1.0 wt%C, W direction) in 7 mm cell size. And in 4mm cell size specimen, it was 169.2 MPa (0.1 wt%C, W direction), 224.2 MPa (0.1 wt%C, L direction). This means that flexural strength of 0.1 wt%C core material was higher than that of 1.0wt%C core material, which was contrary to expectation. SEM and EDS analysis represented that grain boundary diffusion had occurred in0.1 wt%C core, but no grain boundary diffusion in 1.0 wt%C core. And corrugated surface of 0.1 wt%C core was flat, whereas that of 1.0 wt%C core was not flat. As a result, contact area between two 1.0 wt%C cores was much less than that of 0.1 wt% cores, It is thought to be main reason for lower flexural strength of 1.0 wt%C core.

진공 용기 제작시 공정별 변형 예측에 관한 연구 (A Study on the Prediction of Welding Distortion of Vacuum Vessel during Fabrication Process)

  • 이동주;김하근;신상범
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.96-96
    • /
    • 2009
  • The purpose of this study is to clarify the transitional behavior and main factor of excessive welding distortion caused by fabrication process of STS 304 vacuum vessel having double curvature for the efficient quality control of vacuum vessel. In order to do it, the predictive equations of the welding distortion in simple weldment of vacuum vessel were established by conventional finite element analysis. And the principal factor controlling the welding distortion was identified by evaluating the welding distortion of vacuum vessel in each fabrication process with FEA and simplified thermo elastic method. Based on the results, the principal factors of distortion of vacuum vessel were clarified as angular distortion and transverse shrinkage which are a source of excessive out-of plane distortion in the double curved vacuum vessel. It was expected that the FE analysis results of this study could contribute to establish the proper control method of welding distortion for double curved vacuum vessel.

  • PDF

산화막 CMP에서 리테이닝 링의 인서트 재질이 연마정밀도에 미치는 영향 (Effects of Insert Materials of Retaining Ring on Polishing Finish in Oxide CMP)

  • 박기원;박동삼
    • 한국기계가공학회지
    • /
    • 제18권8호
    • /
    • pp.44-50
    • /
    • 2019
  • CMP is the most critical process in the manufacture of silicon wafers, and the use of retaining rings, which are consumable parts used in CMP equipment, is increasingly important. Since the retaining ring is made of plastic, it is not only weak in strength but also has the problem of taking a long time for the flattening operation of the ring itself performed before the CMP process, and of the imbalance of force due to bolt tightening causing uneven wear. In order to solve this problem, the retaining ring and the insert ring are integrally used, and the flatness of the retaining ring may be affected depending on the material of the insert ring. Also, the residual stress generated in the manufacturing process of the insert ring may cause distortion of the ring, which may adversely affect the precision polishing. In this study, when the insert ring is made of Zn or STS304, the thickness variation and the flatness of the retaining ring are compared and, finally, the material removal rate is analyzed by polishing the wafer by the oxide CMP process. Through these experiments, the effects of the insert ring material on the polishing accuracy of the wafers were investigated.