• Title/Summary/Keyword: STS 304

Search Result 368, Processing Time 0.021 seconds

Shape Change Analysis of a Small Propane Container by Pressure Test (소형프로판용기 내압시험을 통한 용기의 형상변화 분석)

  • Lee, Jong-Sang;Jang, Kap-Man;Lee, Yoon Hyoung;Yim, Sang-Sik;Lee, Jin-Han
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.6
    • /
    • pp.40-44
    • /
    • 2014
  • In this study, it is analyzed that a change in the shape of small propane containers made of STS304 when increasing of internal pressure. When internal pressure of a small propane container increased, bottom of end plate is convexly changed. This test is applied to a water bath pressure test to analyze the characteristics of the container. Water bath is able to analyze relationship between internal pressure and volume. In result, shape change section is confirmed because bottom of end plate is convexly changed. In addition, this section tend to decrease internal pressure because a volume increment increase out of proportion to pressure. The results of this study are expected to contribute to improving the safety of the pressure vessel, as well as various small propane container.

Corrosion Analysis of Materials by High Temperature and Zn Fume (고온 및 Zn Fume에 의한 소재들의 부식성 분석)

  • Baek, Min Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.551-556
    • /
    • 2018
  • The material normally used in hot dip galvanizing facilities is SM45C (carbon steel for mechanical structure, KS standard), mainly because of its price. During this process, the oxidation of the plating facility occurs due to the heat of the Zn fumes coming from the molten zinc. Since the cycle time of the current facilities is 6 months, much time and money are wasted. In this study, the corrosive properties of various materials (Inconel625, STS304, SM45C) were investigated by oxidation in a high temperature and Zn fumes environment. The possibility of applying the hot-dip galvanizing equipment was investigated for each material. The Zn fumes were generated by directly bubbling Ar gas into Zn molten metal in a 650 degree furnace. High-temperature, Zn fumes corrosion was conducted for 30 days. The sample was removed after 30 days and the oxidation of the surface was confirmed with EDS and SEM, and the corrosion properties were examined using potentiodynamic polarization tests.

A Study of the Effect of Magnetic Fields Using Welding Process (용접 공정에서 자기력의 효과에 대한 연구)

  • Cho, Hong Seok;Park, Ik Keun;Lee, Wooram
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.32-43
    • /
    • 2014
  • Welding and joining technology has become a core field. Therefore it is more widely applied to nonferrous metals, inorganic and polymeric materials. That is because the high performance, high function and diversification trend of materials used as industrial technology develops. In the laser welding process, STS 304 and SCP1-S were used as the base materials, the output density was fixed $7MW/cm^2$, the protective gas was argon(Ar) and the transfer rate was fixed 5 mm/sec. and it was progressed while the magnetic field is gradually increasing by 100 mT ranging 0 to 400 mT. The tensile test showed in average about 6 % tensile strength improvement in the case of the laser welding process using the magnetic fields. In the shielded metal arc welding process using SPHC only or the combination of SPHC+STS304 as base materials. The electric current was set at 80 Amperes and the protective gas used argon(Ar) the same as the laser welding process and the strength of magnetic fields. In the shielded metal arc welding process using the magnetic fields, the tensile tests showed about 5 % tensile strength improvement in the case of using SPHC only, 3 % tensile strength improvement in the case of using the combination of SPHC+ STS304. In comparing the results of numerical analysis to the results of experimental tests, it was revealed that the temperature, thermal stress distribution and the behavior of molten pool were similar to those of real tests. Consequently, it may be considered that the numerical assumption and the analytical model used in this study were reasonable.

Corrosion analysis for application of CCO thin films to industrial equipment materials (산업 설비 재료에 CCO박막의 적용을 위한 부식성 분석)

  • Baek, Min Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.98-103
    • /
    • 2018
  • Many coating technologies have been developed so far to improve the corrosion resistance, strength, abrasion resistance and other surface properties of materials and equipment. Among them, the formation of CCO (CaCoO, then CCO) thin films has been studied and used in the electronic material field. One of the characteristics of CCO thin films is that it is resistant to high temperature heat. Particularly, the method of forming the CCO thin film is relatively simple, and it was judged that it could be introduced into the existing equipment. Therefore, in this study, an experiment and analysis were carried out to determine whether the coating of CCO thin films can be applied to hot dip galvanizing facilities. A CCO thin film was formed on the surface of STS304 base material and oxidized in a Zn fume atmosphere in a $650^{\circ}C$ furnace with an air atmosphere. Oxidation was carried out for 30 days, after which the shape of the CCO thin film was confirmed by SEM and its corrosivity was analyzed through a potentiodynamic polarization experiment.

Effect of Heating Rates on Microstructures in Brazing Joints of STS304 Compact Heat Exchanger using MBF 20 (MBF 20으로 브레이징한 STS304 콤팩트 열교환기 접합부의 미세조직에 미치는 가열속도의 영향)

  • Kim, Jun-Tae;Heo, Hoe-jun;Kim, Hyeon-Jun;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.46-53
    • /
    • 2016
  • Effect of heating rate on microstructure of brazed joints with STS 304 Printed Circuit Heat Exchanger (PCHE),which was manufactured as large-scale($1170(L){\times}520(W)){\times}100(T)$, mm), have been studied to compare bonding phenomenon. The specimens using MBF 20 was bonded at $1080^{\circ}C$ for 1hr with $0.38^{\circ}C/min$ and $20^{\circ}C/min$ heating rate, respectively. In case of a heating rate of $20^{\circ}C/min$, overflow of filler metal was observed at the edge of a brazed joints showing the height of filler metal was decreased from $100{\mu}m$ to $68{\mu}m$. At the center of the joints, CrB and high Ni contents of ${\gamma}$-Ni was existed. For the joints brazed at a heating rate of $0.38^{\circ}C/min$, the height of filler was decreased from $100{\mu}m$ to $86{\mu}m$ showing the overflow of filler was not appeared. At the center of the joints, only ${\gamma}$-Ni was detected gradating the Ni contents from center. This phenomenon was driven from a diffusion amount of Boron in filler metal. With a fast heating rate $20^{\circ}C/min$, diffusion amount of B was so small that liquid state of filler metal and base metal were reacted. But, for a slow heating rate $0.38^{\circ}C/min$, solid state of filler metal due to low diffusion amount of B reacted with base metal as a solid diffusion bonding.

Robust Optimization of the Solenoid Assembly in Electromagnetic Limited Slip Differential by Considering the Uncertainties in Machining Variables (가공변수의 불확실성을 고려한 전자제어식 차동제한장치 솔레노이드 어셈블리의 강건 최적설계)

  • Oh, Sang-Kyun;Lee, Kwang-Ki;Suh, Chang-Hee;Jung, Yun-Chul;Kim, Young-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1307-1313
    • /
    • 2011
  • The mechanical limited slip differential (LSD) in vehicles is being replaced by the electromagnetic LSD because of its fast response and better active control characteristics. The coil housing made of STS 304 is one of the most important parts in the solenoid assembly of the electromagnetic LSD. High geometrical accuracy is a prerequisite for the manufacture of such coil housings, but precision machining is difficult because of the use of STS 304 thin plate and the variance in machining variables. The aim of this study is to optimize the mean and variance of the shape accuracy in the coil housing by finding a robust solution for the machining process conditions. The mean and standard deviation of the jaw contact pressure, cutting speed, and feed rate are considered to be the major parameters for minimizing the geometrical mean and variance. The response surface model based on the second-order Taylor series is combined together to minimize the mean and variance of the shape accuracy of the coil housing.

Microstructures and Mechanical Properties of GTD 111DS Welds by $CO_2$ Laser Welding ($CO_2$ 레이저를 이용한 GTD111DS 초합금 용접부의 미세조직과 기계적 성질)

  • Lee, Tack-Woon;Yang, Sung-Ho;Kim, Sang-Hun
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.108-108
    • /
    • 2009
  • Precipitation hardening nickel base alloys strengthened by intermetallic compounds are extensively used to manufacture on the components of the hot section of gas turbine engines. To ensure structural stability and maintenance of strength properties for a long time, nickel alloys are normally subjected to complex alloying with elements to form ${\gamma}'$(gamma prime). Such alloys have a limited weldability, are normally welded in high temperature. However, laser welding have a merit that applies in room temperature as easy control of welding parameter and heat input. In this study, $CO_2$ laser welding is applied on STS304 plate with good ductility and precipitation hardening nickel base alloy (GTD111DS) used blade material. Also, several welding parameters are applied on powder, power and travel speed. There are no cracks in Rene 80 and IN 625 powder when STS304 plate is used. But IN 625 powder has no cracks and Rene 80 have some cracks in welds with GTD111DS substrate. Adjusting of welding parameter is tried to apply Rene 80 having a good strength compare to IN 625. In the result of adjusted welding parameter, optimized welding parameters are set with low power, low feed rate and high welding speed. Tensile strength of GTD111DS substrate with Rene 80 powder is same and over than the one of base metal in room temp and high temp($760^{\circ}C$).

  • PDF

Storage container-dependent chemical and microbiological characteristics during kimchi storage (저장용기에 따른 김치 저장 중의 화학적, 미생물학적 특성)

  • Kim, Seon-Gyu;Han, Min-Hui;Hwang, Jong-Hyun;Moon, Gi-Seong
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.304-309
    • /
    • 2020
  • Different types of storage containers, such as polypropylene (PP), stainless steel (STS), and ceramic were used for kimchi storage at 0℃ in a refrigerator, and the characteristics were compared for 32 days. The pH of kimchi samples in PP and STS containers reached 4.59 and 4.53, respectively at day 16, while a pH of 4.92 could be observed in ceramic containers. This trend persisted until day 32. Titratable acidities of the PP and STS container contents reached 0.83 and 0.82%, respectively, on day 16, while it reached 0.73% in the case of the ceramic container contents. The viable cell counts of lactic acid bacteria in kimchi samples in PP, STS, and ceramic containers fluctuated and finally reached 4.87, 5.44, and 5.35 Log CFU/g, respectively. Weissella koreensis occupied a large portion of the kimchi sample of the ceramic container on day 20 based on the metagenomic analysis. Taken together, ceramic container might be desirable for the storage of kimchi in low temperature refrigerators.

An Analysis on Stainless Steel for Hydrogen Generator' Pipeline Interacting with Alkaline Solution (알칼리 용액이 수소배관으로 사용되는 Stainless steel에 미치는 영향 분석)

  • Byun, Chang-Sub;Choi, Jin-Young;Lim, Soo-Gon;Hwang, Gab-Jin;Choi, Ho-Sang;Shin, Hoon-Kyu
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.3
    • /
    • pp.207-212
    • /
    • 2012
  • This study was performed to observe the change of stainless steel pipe interacting with alkaline solution. We used STS316L and STS304 as samples which were soaked in alkaline solution. We measured the samples by use of FE-SEM, EDX, SIMS to observe the surface and depth profile of both samples. The result showed that the precipitate appeared on the surface of both samples from 5 days. but the precipitate was confirmed to be decreased as time passes. but the quantitative change of precipitates at both samples was different as time passed. The EDX showed that the precipitate is Potassium from solution of Electrolysis. The result also showed that the primary elements of stainless steel pipeline and of Alkaline Solution were changed. The change of primary elements was severe between 5 days to 16 days and was stable around 40 days at both samples. The reaction of STS316L with alkaline solution was lower than STS304. We hoped that this study would be the foundation of developing the electrode of the alkaline hydrogen generator.

Evaluation of application possibility in chemical decontamination of materials for reactor coolant pump (원자로 냉각재 펌프용 재료의 화학 제염 공정 시 적용 가능성 평가)

  • Kim, Jeong-Il;Kim, Ki-Joon;Kim, Seong-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.84-94
    • /
    • 2007
  • As a reactor coolant pump(RCP) is operated in the nuclear power system for a long time. so its surface is continuously contaminated by radioactive scales. In order to perform regular or emergency repair about RCP internals a special decontamination process should be used to reduce the radiation from the RCP surface by means of chemical cleaning. In this study, applicable possibility in chemical decontamination for RCP was investigated on the various materials. The STS 304 showed the best electrochemical properties for corrosion resistance than other materials. However, the pitting corrosion was slightly generated in both STS 415 and STS 431 with the increasing numbers of cycle and intergranular corrosion were sporadically observed. The size of their pitting corrosion and intergranular corrosion were also increased with increasing cycle numbers.