• Title/Summary/Keyword: STRATIFICATION STRUCTURE

Search Result 146, Processing Time 0.025 seconds

Effect of El Niño and La Niña on the Coastal Upwelling in East Sea, South Korea (엘니뇨와 라니냐가 한국 동해 연안용승에 미치는 영향)

  • Seo, Ho-San;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.1
    • /
    • pp.75-83
    • /
    • 2020
  • This study investigated the effects of El Niño and La Niña on coastal upwelling in the East Sea of Korea using long-term (1967-2017) water temperature observation data and Oceanic Niño Index (ONI). As a result of time series analysis of water temperature, the occurrence frequency of summer coastal upwelling was the highest in the southeastern (Ulgi ~ Gimpo) coast. In 1987-1988 and 1997-1998, when the annual fluctuations of ONI plunged more than 2.5, the water temperature in whole coast areas of the East Sea (Busan ~ Goseung) rose by 4 ~ 7 ℃. The temperature structure of the East Sea coastal water was different when El Niño was strong with ONI above 1.5 and La Niña with strong ONI below -0.8. When El Niño is strong, the water temperature anomaly in coastal waters is negative. This is due to the strong baroclinic tilting and the formation of shallow temperature stratification in the coastal waters. The strong La Niña season is opposite to the strong El Niño season, whereas the water temperature anomaly is positive. In addition, the baroclinic tilting is weaker than the time of strong El Niño and the temperature stratification is formed deeper than the time of strong El Niño. The formation of temperature stratification at shallow depths when El Niño is strong can increase the probability of occurrence coastal upwelling caused by southerly winds in the summer season. On the contrary, when La Niña is strong, occurrence of coastal upwelling is less likely even if the southerly wind blows continuously. This is because the temperature stratification is formed at deeper than when El Niño is strong.

Simple RE Prediction Model of the Signal Line of the Microstrip Structure (마이크로스트립 구조의 신호선에 의한 방사성 간섭 예측모델)

  • Ju, Jeong-Ho;Jang, Geon-Ho;Kahng, Sung-Tek;Kim, Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.31-33
    • /
    • 2007
  • This work presents the simplified mechanism that the microstrip line generates the radiated emission which is one of the measures on the EMI levels. The electric currents on the metallization of the structure are input to the radiation integrals with the Green's functions being derived to consider the stratification of the microstrip. The simulated results suggest the method of the conceptualization on the RE characteristics of the signal trace in the PCB structure.

  • PDF

Exploring the Dynamics of Dissolved Oxygen and Vertical Density Structure of Water Column in the Youngsan Lake (인공호소인 영산호의 용존산소 분포와 수층 성층구조의 연관성 분석)

  • Song, Eun-Sook;Cho, Ki-An;Shin, Yong-Sik
    • Journal of Environmental Science International
    • /
    • v.24 no.2
    • /
    • pp.163-174
    • /
    • 2015
  • The Youngsan Lake was constructed to supply agricultural water to the extensive rice fields in the basin of the lake in 1981. Hypoxia has often developed in the bottom water of the lake during the warm season although the water depth is relatively shallow (< 16 m). We investigated the spatial and temporal variations of dissolved oxygen (DO) and physical properties such as water temperature, salinity and turbidity to elucidate the effects of change in physical properties on DO dynamics in the lake. Vertical profiles of DO, temperature, salinity, and water density were also explored to verify the development of stratification in relation to DO variation in the water column. Hypoxia (DO < $2mg\;L^{-1}$) was not observed in the upper regions whereas hypoxia was detected in the lower regions during the warm season. Thermocline generally developed in the lower regions during the warm season unlike the previous studies in which no thermocline was observed. However, water column was well mixed when freshwater water was discharged from the reservoir through the sluice gate of the dike. DO concentrations also decreased when halocline or pycnocline developed during the dry season suggesting that the vertical stratification of water column affects DO dynamics although the water depth is shallow in the Youngsan lake.

Long-term Simulation and Uncertainty Quantification of Water Temperature in Soyanggang Reservoir due to Climate Change (기후변화에 따른 소양호의 수온 장기 모의 및 불확실성 정량화)

  • Yun, Yeojeong;Park, Hyungseok;Chung, Sewoong;Kim, Yongda;Ohn, Ilsang;Lee, Seoro
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.1
    • /
    • pp.14-28
    • /
    • 2020
  • Future climate change may affect the hydro-thermal and biogeochemical characteristics of dam reservoirs, the most important water resources in Korea. Thus, scientific projection of the impact of climate change on the reservoir environment, factoring uncertainties, is crucial for sustainable water use. The purpose of this study was to predict the future water temperature and stratification structure of the Soyanggang Reservoir in response to a total of 42 scenarios, combining two climate scenarios, seven GCM models, one surface runoff model, and three wind scenarios of hydrodynamic model, and to quantify the uncertainty of each modeling step and scenario. Although there are differences depending on the scenarios, the annual reservoir water temperature tended to rise steadily. In the RCP 4.5 and 8.5 scenarios, the upper water temperature is expected to rise by 0.029 ℃ (±0.012)/year and 0.048 ℃ (±0.014)/year, respectively. These rise rates are correspond to 88.1 % and 85.7 % of the air temperature rise rate. Meanwhile, the lower water temperature is expected to rise by 0.016 ℃ (±0.009)/year and 0.027 ℃ (±0.010)/year, respectively, which is approximately 48.6 % and 46.3 % of the air temperature rise rate. Additionally, as the water temperatures rises, the stratification strength of the reservoir is expected to be stronger, and the number of days when the temperature difference between the upper and lower layers exceeds 5 ℃ increases in the future. As a result of uncertainty quantification, the uncertainty of the GCM models showed the highest contribution with 55.8 %, followed by 30.8 % RCP scenario, and 12.8 % W2 model.

Experimental Study on the Velocity Structure of 2-D Density Current Induced by Selective Withdrawal (선택취수에 의한 2차원 밀도류의 흐름특성에 관한 실험적 연구)

  • Lyu, Siwan;Kim, Young Do;Cho, Gilje;Kwon, Jae Hyun;Lee, Nam Joo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.825-832
    • /
    • 2009
  • A series of laboratory experiments has been performed to investigate the flow characteristics of 2-dimensional density currents induced by selective withdrawal, which is commonly suggested as a measure for removal of high turbid water from reservoirs. Saltwater has been used to simulate the density stratification over depth and PIV(Particel Image Velocimetry) for observing the velocity structure. Experimental conditions have been established according to Richardson number, which is the dimensionless number that expresses the ratio of potential to kinetic energy. From the experiments, the patterns of longitudinal decay of centerline axial velocity induced by the withdrawal have been distinguished from other experimental cases. The rate of longitudinal decay increase as the Richardson number increases. The variations of volumetric and momentum flux along the longitudinal axis have also shown to be dependent on Richardson number.

Numerical Study of Double Diffusive Convection of a Stratified Fluid in an Annulus Due to Lateral Heating (환형밀폐용기내 성층화된 유체의 옆면가열에 의한 이중확산대류에 관한 수치해석)

  • 강신형;전창덕;이진호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1720-1730
    • /
    • 1995
  • Finite-difference analysis was conducted to study the natural convection of a stably stratified salt-water solution in an annulus due to lateral heating. The main purpose of this study is to examine in detail the multi-layered flow structure. Calculation was thus made for R $a_{\eta}$=2*10$^{5}$ and 6.5*10$^{5}$ . Formation of layered flow structure, merging process of layers, the corresponding temperature and concentration distributions, Nusselt number variations with time are examined. Numerical results show that in each layer, the temperature profile looks 'S`-shaped and the concentration profile is uniform due to the convective mixing. The formation of the roll and the layer is governed by natural convection due to the temperature gradient and the merging process of the layer by diffusion of the concentration.ation.

Species Composition and Structure of the Oriental Arbor-vitae (Thuja orientalis L. Forest in Daegu, Southeastern Korea

  • Cho, Hyun-Je;Bae, Kwan-Ho
    • The Korean Journal of Ecology
    • /
    • v.24 no.4
    • /
    • pp.205-211
    • /
    • 2001
  • The floristic composition and structure of the Oriental Arbor-viate forest, natural monument no. 1, were investigated in the Daegu city, southeastern Korea. Vegetation stratification have four layers including tree (>5m), subtree (2m-5m), shrub (1m-2m) and herbs (<1m), which occupied 63.8%, 10.7%, 12.1% and 49.4%, respectively. The vegetation of the study area were divided into Artemisia keiskeana - Quercus variabilis and Pyrrosia linearifolia-Thuja orientalis (OAV) communities. Frequency distribution for diameter classes of the Oriental Arbor-vitae population showed a reverse-J shape. The result suggests that the OAV forest of this site might maintains continuously the present state. The annual radial growth of OAV, Pinus densiflora and Quercus variabilis, the dominant species of the present site showed 0.29, 1.01 and 1.28 mm/year, respectively. Competition of OAV with theh other species including P. densiflora and Q. variabilis could influence negatively on the growthand survival of OAV forest in this site.

  • PDF

A Study on Function of Artificial Upwelling Structure of Material (재질에 따른 인공용승구조물의 기능성에 관한 연구)

  • Jeon, Yong-Ho;Kim, Hong-Jin;Ryu, Cheong-Ro
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.277-282
    • /
    • 2002
  • This study was performed to find out basic function of artificial upwelling structures. Generation of artificial upwelling current was affected by size of structures, incident current and porosity. when stratification parameters was about 3.0, relative height(hs/h) of structures was $0.125{\sim}0.15$, stable artificial upwelling current was generated in the back-side of structures. when porosity is lower than 50%, the effect of artificial upwelling structure was to be better than little by little.

  • PDF

Antarctic Marine Microorganisms and Climate Change: Impacts and Feedbacks

  • Marchant Harvey J.;Davidson Andrew T.;Wright Simon W.
    • Ocean and Polar Research
    • /
    • v.23 no.4
    • /
    • pp.401-410
    • /
    • 2001
  • Global climate change will alter many such properties of the Southern Ocean as temperature, circulation, stratification, and sea-ice extent. Such changes are likely to influence the species composition and activity of Antarctic marine microorganisms (protists and bacteria) which playa major role in deter-mining the concentration of atmospheric $CO_2$ and producing precursors of cloud condensation nuclei. Direct impacts of climate change on Antarctic marine microorganisms have been determined for very few species. Increasing water temperature would be expected to result in a southward spread of pelagic cyanobacteria, coccolithophorids and others. Growth rates of many species would be expected to increase slightly but nutrient limitation, especially micronutrients, is likely to result in a negligible increase in biomass. The extent of habitats would be reduced for those organisms presently living close to the upper limit of their thermal tolerance. Increased UVB irradiance is likely to favour the growth of those organisms tolerant of UVB and may change the trophic structure of marine communities. Indirect effects, especially those as a consequence of a diminution of the amount of sea-ice and increased upper ocean stratification, are predicted to lead to a change in species composition and impacts on both trophodynamics and vertical carbon flux.

  • PDF

An Experimental Study on the Temperature Distribution in IRWST

  • Kim, Sang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.820-829
    • /
    • 2004
  • The In-Containment Refueling Water Storage Tank (IRWST), one of the design improvements applied to the APR -1400, has a function to condense the high enthalpy fluid discharged from the Reactor Coolant System (RCS). The condensation of discharged fluid by the tank water drives the tank temperature high and causes oscillatory condensation. Also if the tank cooling water temperature approaches the saturated state, the steam bubble may escape from the water uncondensed. These oscillatory condensation and bubble escape would burden the undue load to the tank structure, pressurize the tank, and degrade its intended function. For these reasons simple analytical modeling and experimental works were performed in order to predict exact tank temperature distribution and to find the effective cooling method to keep the tank temperature below the bubble escape limit (93.3$^{\circ}C$), which was experimentally proven by other researchers. Both the analytical model and experimental results show that the temperature distributions are horizontally stratified. Particularly, the hot liquid produced by the condensation around the sparger holes goes up straight like a thermal plume. Also, the momentum of the discharged fluid is not so strong to interrupt this horizontal thermal stratification significantly. Therefore the layout and shape of sparger is not so important as long as the location of the sparger hole is sufficiently close to the bottom of the tank. Finally, for the effective tank cooling it is recommended that the locations of the discharge and intake lines of the cooling system be cautiously selected considering the temperature distribution, the water level change, and the cooling effectiveness.