• Title/Summary/Keyword: STORM

Search Result 1,692, Processing Time 0.032 seconds

A Hydrological Study on the Flow Characteristic of the Keum River (하천의 유황에 관한 수문학적 연구)

  • 박성우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.2
    • /
    • pp.3438-3453
    • /
    • 1974
  • Unmeasured value of water for human lives is widely approved, but the water as one of natural resources cannot be evaluated with ease since it changes itself ceaselessly by flowing-out or transforming the phase. Major objectives of the study concerned consequently with investigating its potentiality and evaluating its time seriesly availabity in a volumatic unit. And the study was performed to give the accurate original data to the planners concerned. Some developed rational methods of predicting runoff related to hydrological factors as precipitation, were to be discusseed for their theorical background and to be introduced whether they needed some corrections or not, comparing their estimation with actual runoff from synthetic unit-hydrograph methods. To do so, the study was performed to select Kongju Station, located at the watershed of the Keum River, and to collect such hydrological data from 1962 to 1972 as runoff, water level, precipitation, and so on. On the other hand, the hydrological characteristics of runoff were concluded more reasonably in numerical values, with calculating the the ratio of daily runoff to annual discharge of the flow in percentage, as. the distribution ratio of runoff. The results of the study can be summarized as follows; (1) There needed some consideration to apply the Kajiyama's Formula for predicting monthly runoff of rivers in Korea.(2) The rational methods of predicting runoff might be recommended to become less theorical and reliable than the unique analyzation of data concerned in each given water basin. The results from the Keum River prepared above would be available to any programms concerned. (3) The most accurate estimation for runoff could be suggested to synthetic unithydrograph methods calculated from the relation between each storm and runoff. However it was not contained in the study. (4) The relations between rainfall and runoff at KongJu Station were as following table. The table showed some intersting implications about the characteristics of runoff at site, which indicated that the runoff during three months from July to September approached total of 60% of quantity while precipitation concentrated on the other three from June to August. And there were some months which had more amount of runoff than expected values calculated from the precipitation, such as Febrary, March, August, September, Octover, and December, shown in the table. Such implications should be suggested to meet any correction factors in the future formulation concerned with the subjects, if any rational methods would be required.

  • PDF

Analysis of Quaternary Sedimentary Environment based on 3D Geological Modeling for Saban-ri, Haeri-myeon, Gochang (고창군 해리면 사반리 일대 3차원 지질모델링을 활용한 제4기 퇴적환경분석)

  • Shin, Haein;Yu, Jaehyung;Bae, Sungji;Yang, Dongyoon;Han, Min
    • Economic and Environmental Geology
    • /
    • v.49 no.4
    • /
    • pp.291-299
    • /
    • 2016
  • This study examined stratigraphic research containing extreme climate event during Quaternary period in Saban-ri, Haeri-myeon, Gochang by constructing 3D topographic model and 3D geological model. As a result of 3D topographic model and subsurface geological model, the geology of study area accumulated bedrock, Pleistocene series, and Holocene series chronologically. Most of the study area consist of bedrock on basement and Holocene series on upper layer. Additionally, Pleistocene series are presented as lens-shaped deposit on eastern part, and wedge-shaped deposit on northeastern part. Holocene layers consist of sand and clay-silt layer deposited sequentially where implies fluvial deposits on transgression environment. Distinctively, Pleistocene clayey silt layer and Holocene sand layer on eastern are observed as pond shape deposits that are considered as storm-related deposits originated from overwash system caused by extreme paleoclimate.

Influences of Coastal Upwelling and Time Lag on Primary Production in Offshore Waters of Ulleungdo-Dokdo during Spring 2016 (2016년 춘계 울릉도-독도주변해역에서 동해 연안 용승과 시간차에 의한 일차생산력 영향)

  • Baek, Seung Ho;Kim, Yun-Bae
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.2
    • /
    • pp.156-164
    • /
    • 2018
  • In order to investigate the upwelling and island effects following the wind storm events in the East Sea (i.e., Uljin-Ulleungdo-Dokdo line) during spring, we assessed the vertical and horizontal profiles of abiotic and biotic factors, including phytoplankton communities. The assessment was based on the Geostationary Ocean Color Imager (GOCI) and field survey data. A strong south wind occurred on May 3, when the lowest sea level pressure (987.3 hPa) in 2016 was observed. Interestingly, after this event, huge blooms of phytoplankton were observed on May 12 along the East Korean Warm Current (EKWC), including the in the offshore waters of Ulleungdo and Dokdo. Although the diatoms dominated the EKWC area between the Uljin coastal waters and Ulleungdo, the population density of raphidophytes Heterosigma akashiwo was high in the offshore waters of Ulleungdo-Dokdo. Based on the vertical profiles of Chlorophyll-a (Chl. a), the sub-surface Chl. a maximum appeared at 20 m depths between Uljin and Ulluengdo, whereas relatively high Chl. a was distributed equally across the entire water column around the waters of Ulleungdo and Dokdo islands. This implies that the water mixing (i.e., upwelling) at the two islands, that occurred after the strong wind event, may have brought the rapid proliferation of autotrophic algae, with nutrient input, to the euphotic layer. Therefore, we have demonstrated that a strong south wind caused the upwelling event around the south-eastern Korean peninsula, which is one of the most important role in occurring the spring phytoplankton blooms along the EKWC. In addition, the phytoplankton blooms may have potentially influenced the oligotrophic waters with discrete time lags in the vicinity of Ulleungdo and Dokdo. This indicates that the phytoplankton community structure in the offshore waters of Ulleungdo-Dokdo is dependent upon the complicated water masses moving related to meandering of the EKWC.

Design Strategies to Enhance Resilience of Ecosystem Services in Urban Wetland - Using System Thinking - (생태계서비스 회복력 향상을 위한 도시 습지 설계 전략 - 시스템 사고를 활용하여 -)

  • You, Soo-jin;Ham, Eun-Kyung;Lee, Jung-a;Cho, Dong-Gil;Chon, Jin-hyung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.4
    • /
    • pp.43-61
    • /
    • 2017
  • The wetlands are facing environmental changes such as desiccation that occurs with the passage of time and reduced ecosystem services from wetlands in the city. In order to maintain the ecosystem services provided by wetlands in urban areas, a system thinking about the trade-off phenomenon of ecosystem services occurring as the wetlands undergo environmental changes is needed. Therefore, the purpose of this study is to develop strategies for wetland design using system thinking approach to enhance the resilience of ecosystem services degraded by the desiccation of wetlands and other disturbances. The objectives of this study include the system boundary and variables. Second, analyzing the dynamics of wetland design strategy. Third, it analyzes the trade-off phenomenon of ecosystem services in terms of the hydrology, hydric soil, and plants strategies to mitigate these effects. Fourth, wetland basic design to improve the resilience of ecosystem services. A wetland in Abuk-Mountain Neighborhood Park, Miryang-si, Gyeongsangnam-do, has been selected as a case study. Causal loop diagrams(CLDs) are used to analyze feedback in the wetland regime. In summary, hydrology, hydric soil, and plants is suggested as system boundaries to design plan. Design strategies for the wetland focused on robustness, redundancy, rapidity, and resourcefulness as a result of CLD analysis are first proposed in order to effectively maintain the wetland regime over the long term. Secondly, in a section related to hydrology, the CLD results show the trade-offs between provisioning-cultural services and regulating services. In order to control these services, a "water cycling system" has been implemented due to its strength in terms of robustness. The CLDs for hydric soil showed the trade-offs between regulating services and supporting services. An "installation of storm drainage for maintaining water levels" was selected due to the strength offered in terms of redundancy and rapidity. The CLDs for plants showed the trade-offs between provisioning - cultural services and regulating services. In order to control the strategic points, the "planting of indigenous vegetation" was suggested given the strength in terms of redundancy. In this study, a wetland design method is proposed that can improve the resilience of wetland ecosystem services by analyzing the dynamics overtime. The results of this research can theoretically be applied to help restore ecosystem services in wetlands using ecological landscape design. In addition, this study will contribute to reducing maintenance costs by improving wetland resilience.

Application Analysis of GIS Based Distributed Model Using Radar Rainfall (레이더강우를 이용한 GIS기반의 분포형모형 적용성 분석)

  • Park, Jin-Hyeog;Kang, Boo-Sik;Lee, Geun-Sang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.1
    • /
    • pp.23-32
    • /
    • 2008
  • According to recent frequent local flash flood due to climate change, the very short-term rainfall forecast using remotely sensed rainfall like radar is necessary to establish. This research is to evaluate the feasibility of GIS-based distributed model coupled with radar rainfall, which can express temporal and spatial distribution, for multipurpose dam operation during flood season. $Vflo^{TM}$ model was used as physically based distributed hydrologic model. The study area was Yongdam dam basin ($930\;km^2$) and the 3 storm events of local convective rainfall in August 2005, and the typhoon.Ewiniar.and.Bilis.collected from Jindo radar was adopted for runoff simulation. Distributed rainfall consistent with hydrologic model grid resolution was generated by using K-RainVieux, pre-processor program for radar rainfall. The local bias correction for original radar rainfall shows reasonable results of which the percent error from the gauge observation is less than 2% and the bias value is $0.886{\sim}0.908$. The parameters for the $Vflo^{TM}$ were estimated from basic GIS data such as DEM, land cover and soil map. As a result of the 3 events of multiple peak hydrographs, the bias of total accumulated runoff and peak flow is less than 20%, which can provide a reasonable base for building operational real-time short-term rainfall-runoff forecast system.

  • PDF

Probability Distribution of Nonlinear Random Wave Heights Using Maximum Entropy Method (최대 엔트로피 방법을 이용한 비선형 불규칙 파고의 확률분포함수)

  • 안경모
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.4
    • /
    • pp.204-210
    • /
    • 1998
  • This paper presents the development of the probability density function applicable for wave heights (peak-to-trough excursions) in finite water depth including shallow water depth. The probability distribution applicable to wave heights of a non-Gaussian random process is derived based on the concept of the maximum entropy method. When wave heights are limited by breaking wave heights (or water depth) and only first and second moments of wave heights are given, the probability density function developed is closed form and expressed in terms of wave parameters such as $H_m$(mean wave height), $H_{rms}$(root-mean-square wave height), $H_b$(breaking wave height). When higher than third moment of wave heights are given, it is necessary to solve the system of nonlinear integral equations numerically using Newton-Raphson method to obtain the parameters of probability density function which is maximizing the entropy function. The probability density function thusly derived agrees very well with the histogram of wave heights in finite water depth obtained during storm. The probability density function of wave heights developed using maximum entropy method appears to be useful in estimating extreme values and statistical properties of wave heights for the design of coastal structures.

  • PDF

Construction of High-Resolution Topographical Map of Macro-tidal Malipo beach through Integration of Terrestrial LiDAR Measurement and MBES Survey at inter-tidal zone (대조차 만리포 해안의 지상 LiDAR와 MBES를 이용한 정밀 지형/수심 측량 및 조간대 접합을 통한 정밀 지형도 작성)

  • Shim, Jae-Seol;Kim, Jin-Ah;Kim, Seon-Jeong;Kim, Sang-Ik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.1
    • /
    • pp.58-66
    • /
    • 2010
  • In this paper, we have constructed high-resolution topographical map of macro-tidal Malipo beach through integration of terrestrial LiDAR measurement and MBES survey data at inter-tidal zone. To acquire the enough information of inter-tidal zone, we have done terrestrial LiDAR measurement mounted on the roof of vehicle with DGPS through go-stop-scan method at the ebb tide and MBES depth surveying with tide gauge and eye staff measurement for tide correction and MSL calculation at the high tide all together. To integrate two kinds of data, we have unified the vertical coordination standard to Incheon MSL. The mean error of overlapped inter-tidal zone is about 2~6 cm. To verify the accuracy of terrestrial LiDAR, RTK-DGPS measurement have done simultaneously and the difference of Z value RMSE is about 4~7 cm. The resolution of Malipo topographical map is 50 cm and it has constructed to DEM (Digital Elevation Model) based on GIS. Now it has used as an input topography information for the storm-surge inundation prediction models. Also it will be possible to use monitoring of beach process through the long-term periodic measurement and GIS-based 3D spatial analysis calculating the erosion and deposition considering with the artificial beach transition and coastal environmental parameters.

A Study on the Application of Generalized Extreme Value Distribution to the Variation of Annual Maximum Surge Heights (연간 최대해일고 변동의 일반화 극치분포 적용 연구)

  • Kwon, Seok-Jae;Park, Jeong-Soo;Lee, Eun-Il
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.3
    • /
    • pp.241-253
    • /
    • 2009
  • This study performs the investigation of a long-term variation of annual maximum surge heights(AMSH) and main characteristics of high surge events, and the statistical evaluation of the AMSH using sea level data at Yeosu and Tongyeong tidal stations over more than 30 years. It is found that the long-term uptrends based on the linear regression in the AMSH are 34.5 cm/34 yr at Yeosu and 33.6 cm/31 yr at Tongyeong, which are relatively much higher than those at Sokcho and Mukho in the Eastern Coast. 71% and 68% of the AMSH occur during typhoon's event in Yeosu and Tongyeong tidal stations, respectively, and the highest surge records are mostly produced by the typhoon. The generalized extreme value distribution taking into account of the time variable is applied to detect time trend in annual maximum surge heights. In addition, Gumbel distribution is checked to find which one is best fitted to the data using likelihood ratio test. The return level and its 90% confidence interval are obtained for the statistical prediction of the future trend. The prevention of the growing storm surge damage by the intensified typhoon requires the steady analysis and prediction of the surge events associated with the climate change.

Runoff Characteristics of Non-point Pollutant Sources in an Agricultural Area Watershed (농촌지역 비점오염물질의 유출 특성)

  • Ryu, Kwang-Hyun;Lee, Geon-Jik;Seong, Jin-Uk;Kim, Dong-Sup;Park, Jae-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.2
    • /
    • pp.178-186
    • /
    • 2011
  • This study was conducted to investigate runoff characteristics of non-point pollutant sources in an agricultural area watershed in Boeun area, Chungbuk Province. The monitoring site represented 1.56 $km^2$, about 44.4% of which was covered with paddy fields. The monitoring was conducted for six events in a period of 5 month. Event Mean Concentration (EMC) and Site Mean Concentration (SMC) of suspended solids (SS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen (T-N) and total phosphorus (T-P) were calculated using the results of the water quality parameters. A comparison between arithmetic mean concentration and EMC revealed that nearly all EMCs were higher than the corresponding arithmetic mean concentrations. First-flushing effects were exhibited for SS, BOD, and T-P, with relatively high concentrations in early-stage storm events.

Intercomparison between Temperature and Humidity Sensors of Radiosonde by Different Manufacturers in the ESSAY (Experiment on Snow Storms At Yeongdong) Campaign (대설관측실험(Experiment on Snow Storms At Yeongdong: ESSAY) 기간 중 두 제조사 라디오존데 기온과 습도 센서 상호 비교)

  • Seo, Won-Seok;Eun, Seung-Hee;Kim, Byung-Gon;Seong, Dae-Kyeong;Lee, Gyu-Min;Jeon, Hye-Rim;Choi, Byoung-Cheol;Ko, A-reum;Chang, Ki-Ho;Yang, Seung-Gu
    • Atmosphere
    • /
    • v.26 no.2
    • /
    • pp.347-356
    • /
    • 2016
  • Radiosonde is an observation equipment that measures pressure (geopotential height), temperature, relative humidity and wind by being launched up from the ground. Radiosonde data which serves as an important element of weather forecast and research often causes a bias in a model output due to accuracy and sensitivity between the different manufacturers. Although Korean Meteorological Administration (KMA) and several institutes have conducted routine and intensive radiosonde observations, very few studies have been done before on the characteristics of radiosonde performance. Analyzing radiosonde observation data without proper understanding of the unique nature of those sensors may lead to a significant bias in the analysis of results. To evaluate performance and reliability of radiosonde, we analyzed the differences between two sensors made by the different manufacturers, which have been used in the campaign of Experiment on Snow Storm At Yeongdong (ESSAY). We improved a couple of methods to launch the balloon being attached with the sensors. Further we examined cloud-layer impacts on temperature and humidity differences for the analysis of both sensors' performance among various weather conditions, and also compared daytime and nighttime profiles to understand temporal dependence of meteorological sensors. The overall results showed that there are small but consistent biases in both temperature and humidity between different manufactured sensors, which could eventually secure reliable precisions of both sensors, irrespective of accuracy. This study would contribute to an improved sounding of atmospheric vertical states through development and improvement of the meteorological sensors.