• 제목/요약/키워드: STORM

검색결과 1,573건 처리시간 0.189초

제주도 연안해역의 폭풍해일고 산정 (A Height Simulation on Storm Surges in Jeju Island)

  • 양성기;김상봉
    • 한국환경과학회지
    • /
    • v.23 no.3
    • /
    • pp.459-472
    • /
    • 2014
  • Storm surge height in the coastal area of Jeju Island was examined using the Princeton Ocean Model(POM) with a sigma coordinate system. Amongst the typhoons that had affected to Jeju Island for six years(1987 to 2003), the eight typhoons(Maemi, Rusa, Prapiroon, Olga, Yanni, Janis, Gladys and Thelma) were found to bring relatively huge damage. The storm surge height of these typhoons simulated in Jeju harbour and Seogwipo harbour corresponded relatively well with the observed value. The occurrence time of the storm surge height was different, but mostly, it was a little later than the observed time. Jeju harbour showed a higher storm surge height than Seogwipo harbour, and the storm surge height didn't exceed 1m in both of Jeju harbour and Seogwipo harbour. Maemi out of the eight typhoons showed the maximum storm surge height(77.97 cm) in Jeju harbour, and Janis showed the lowest storm surge height(5.3 cm) in Seogwipo harbour.

폭풍 해일 및 폭풍우로 인한 제주 해안역에서의 동역학적 범람 모의 (Dynamic Simulation of Storm Surge and Storm Water-Combine Inundation on the Jeju Coastal Area)

  • 이정렬;이병걸;이주용;임흥수
    • 한국수자원학회:학술대회논문집
    • /
    • /
    • pp.1945-1949
    • /
    • 2006
  • A storm-induced coastal inundation model (SICIM) is presented to simulate the flood event during typhoon passage that often results in significant rise in sea-level heights especially in the upstream region of the basin. The SICIM is a GIS-based distributed hydrodynamic model, both storm surge and storm water inundations are taken into account. The spatial and temporal distribution of the storm water level and flux are calculated. The model was applied to Jeju Island since it has an isolated watershed that is easy to handle as a first step of model application. Another reason is that it is surrounded by coastal area exposed to storm surge inundation. The model is still advancing and will be the framework of a predictive early inundation warning system.

  • PDF

폭풍해일에 의한 피해사례 연구 및 분석 (Study and Analysis of the Damage by the Storm Surge)

  • 홍원식;박성수;조용식
    • 한국방재학회:학술대회논문집
    • /
    • /
    • pp.447-450
    • /
    • 2008
  • A storm surge is gradually increased in the Korean peninsula. Furthermore, this phenomenon is confined not only the Korean peninsula but also the whole world. A storm surge induced by storm, typhoon, or cyclone is a phenomenon that the water surface elevation is raising by the barometric pressure difference and this water level rising threatens the coastal facilities, settlement, or lives. Most of coastal region in our country are unsafe from this disaster. Even though we are not able to prevent the generation of this phenomenon, we can reduce the damages by investigating the kind of storm surge disaster. Once we finish this investigation, we can reduce the damages by offering the information for risk prior to an invasion of storm surge. This study, we analyzed the previously occurred storm surge damages, and this data can be utilized as a guide for those who live near the coastal region providing the information about the predicting scale of the storm surge

  • PDF

2006-2007년 한반도 인근 폭풍해일 특성 (Characteristics of Storm Surge near the Korean Peninsula in 2006 - 2007)

  • 유승협;이우정
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.595-602
    • /
    • 2009
  • In this study, a two-dimensional storm surges/tide prediction model called the Storm surges/Tide Operational Model (STORM) was applied as the operational forecast model of the Korea Meteorological Administration (KMA). The operational model results were verified for two years (2006-2007) using observed results from tidal stations. Comparisons of modeled and observed storm surges show that larger differences at the western coast of Korea than at the southern and eastern coasts. The averaged root mean square error between the modeled and observed storm surges height are 0.16 m and 0.10 m in 2006 and 2007, respectively.

InfiniBand RDMA 통신을 위한 Apache Storm의 재구성 (Reconfiguration of Apache Storm for InfiniBand Communications)

  • 양석우;손시운;문양세
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • v.7 no.8
    • /
    • pp.297-306
    • /
    • 2018
  • 본 논문에서는 분산 스트림 처리 프레임워크인 Apache Storm을 고성능 통신 장비인 InfiniBand에 적용하는 방안을 다룬다. InfiniBand 상에서 Storm을 동작시키는 쉬운 방법은 IPoIB (IP over InfiniBand)를 사용하는 것이다. 그러나 이 방법은 노드에 심각한 CPU 부하를 발생시키는데, 이는 잦은 문맥 전환과 버퍼 복사에서 기인하는 것으로 나타났다. 이를 해결하기 위해, Storm에서 InfiniBand의 RDMA (Remote Direct Memory Access) 기능을 사용하는 새로운 통신 방식을 제안한다. 첫째, Storm에서 RDMA 기능을 이용하기 위해, 기존 통신 프레임워크인 Netty를 대체하는 새로운 프레임워크인 RJ-Netty (RDMA/JXIO Netty)를 설계 및 구현한다. 둘째, Storm이 기존 Netty와 RJ-Netty를 모두 사용할 수 있도록 관련 클래스들을 개선한다. 셋째, RJ-Netty의 성능을 최대화하기 위해 멀티스레드를 지원하도록 JXIO 서버 기능을 개선한다. 실험 결과, 제안한 RJ-Netty는 Ethernet은 물론 IPoIB에 비해서 메시지 처리량을 향상시키면서도 CPU 부하를 크게 줄인 것으로 나타났다. 본 논문은 Apache Storm을 InfiniBand 상에서 동작시킨 최초의 시도로, 고성능의 InfiniBand RDMA를 사용하여 Storm의 처리 성능을 향상시킨 우수한 연구 결과라 사료된다.

Copulas에 기반한 우리나라 동해안 폭풍해일 분석 (Storm Surge Analysis using Archimedean Copulas)

  • 황정우;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • /
    • pp.421-421
    • /
    • 2017
  • 현재 우리나라에서 끊임없이 발생하고 있는 폭풍해일로부터 연안지역의 안전을 확보하기 위해서는 태풍 시 파랑의 거동 및 특성을 정확히 예측하는 것이 중요하다. 폭풍해일 모의실험의 정확성을 향상시키고 폭풍해일의 위험성을 정량화하기 위해서는 해일파고, 파주기, 그리고 폭풍 지속시간 간의 상관성이 분석되어야한다. 이를 위해 본 연구에서는 Copulas(Archimedean) 이론을 이용하여 폭풍해일에 대한 다변량 통계분석이 이루어졌다. 동해안 연안에서 나타나는 파고, 파주기, 태풍 지속시간, 해면수위, 태풍 도착간격시간 간의 의존성을 켄달의 타우 상관계수를 이용하여 조사하였다. Copulas 다변량 통계분석의 결과, 오직 파고와 파주기, 그리고 태풍지속시간만이 명확한 상관성을 나타냈다.

  • PDF

Performance Evaluation and Analysis of Multiple Scenarios of Big Data Stream Computing on Storm Platform

  • Sun, Dawei;Yan, Hongbin;Gao, Shang;Zhou, Zhangbing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.2977-2997
    • /
    • 2018
  • In big data era, fresh data grows rapidly every day. More than 30,000 gigabytes of data are created every second and the rate is accelerating. Many organizations rely heavily on real time streaming, while big data stream computing helps them spot opportunities and risks from real time big data. Storm, one of the most common online stream computing platforms, has been used for big data stream computing, with response time ranging from milliseconds to sub-seconds. The performance of Storm plays a crucial role in different application scenarios, however, few studies were conducted to evaluate the performance of Storm. In this paper, we investigate the performance of Storm under different application scenarios. Our experimental results show that throughput and latency of Storm are greatly affected by the number of instances of each vertex in task topology, and the number of available resources in data center. The fault-tolerant mechanism of Storm works well in most big data stream computing environments. As a result, it is suggested that a dynamic topology, an elastic scheduling framework, and a memory based fault-tolerant mechanism are necessary for providing high throughput and low latency services on Storm platform.

Hindcasting of Storm Surge at Southeast Coast by Typhoon Maemi

  • KAWAI HIROYASU;KIM DO-SAM;KANG YOON-KOO;TOMITA TAKASHI;HIRAISHI TETSUYA
    • 한국해양공학회지
    • /
    • v.19 no.2
    • /
    • pp.12-18
    • /
    • 2005
  • Typhoon Maemi landed on the southeast coast of Korea and caused a severe storm surge in Jinhae Bay and Masan Bay. The tide gage in Masan Port recorded the storm surge of a maximum of more than 2m and the area of more than 700m from the Seo Hang Wharf was flooded by the storm surge. They had not met such an extremely severe storm surge since the opening of the port. Then storm surge was hindcasted with a numerical model. The typhoon pressure was approximated by Myers' empirical model and super gradient wind around the typhoon eye wall was considered in the wind estimation. The land topography surrounding Jinhae Bay and Masan Bay is so complex that the computed wind field was modified with the 3D-MASCON model. The motion of seawater due to the atmospheric forces was simulated using a one-layer model based on non-linear long wave approximation. The Janssen's wave age dependent drag coefficient on the sea surface was calculated in the wave prediction model WAM cycle 4 and the coefficient was inputted to the storm surge model. The result shows that the storm surge hindcasted by the numerical model was in good agreement with the observed one.

Apache Storm에서 지역성을 고려한 효율적인 트래픽 분배 (Efficient Locality-Aware Traffic Distribution in Apache Storm)

  • 손시운;이상훈;문양세
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • v.23 no.12
    • /
    • pp.677-683
    • /
    • 2017
  • Apache Storm이란 대표적인 실시간 분산 처리 시스템으로써, 분산 서버를 통해 실시간 데이터를 빠르게 처리하는 특징을 갖는다. 기존에 Storm은 다수의 서버에 트래픽을 분배할 때, 셔플(Shuffle) 그룹핑은 처리 지연 문제가 발생하며 이를 개선한 로컬(Local-or-Shuffle) 그룹핑은 트래픽이 특정 노드에 편중되는 문제가 발생할 수 있다. 본 논문은 이러한 기존 Storm 그룹핑에서 발생할 수 있는 문제를 해결하기 위한 지역성 고려(Locality-aware) 그룹핑을 제안한다. 실험에서는 제안하는 지역성 고려 그룹핑이 기존의 셔플 그룹핑 및 로컬 그룹핑에 비해 우수함을 확인하였다. 본 논문은 기존의 Storm의 한계점인 지역성과 로드 밸런싱을 동시에 고려한 우수한 결과라 사료된다.

부산연안에서 폭풍해일고의 추정 (Estimation of Storm Surges on the Coast of Busan)

  • 허동수;염경선;김지민;김도삼;배기성
    • 한국해양공학회지
    • /
    • v.20 no.3
    • /
    • pp.37-44
    • /
    • 2006
  • Each year, the coast of Busan is badly damaged, due to storm surge. The damages are greatly dependent upon the local peculiarities of the region in which the storm surge occurs. So, in order to prevent/reduce recurrence of the disaster due to the storm surge, it is very important to investigate the fluctuation characteristics of the storm surge height, related to the local peculiarities at each coastal area in which the occurrence of the disaster is expected. In this paper, using the numerical model, the storm surge was simulated to examine its fluctuation characteristics at the coast of Busan Typhoons of Sarah (5914), Thelma (8705) and Maemi (0314), which caused terrible damage to the coastal areas alongthe coast of Busan in the past, were taken as an object of the storm surge simulations. Moreover, the storm surge due to virtual typhoons, which were combined with the characteristics of each proposed typhoon (Maemi, Sarah, Thelma), compared to the travel routes of other typhoons, was predicted. As expected, the results revealed that the storm surge heights are enhanced at the coastal region with the concavity like a long-shaped bay. Also, the storm surge heights, due to each typhoon, were compared and discussed at major points along the coast of Busan, related to the local peculiarities, as well as the characteristics and the travel route of the typhoon.